
MATLAB®

Programming Fundamentals

R2012a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Programming Fundamentals

© COPYRIGHT 1984–2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
June 2004 First printing New for MATLAB 7.0 (Release 14)
October 2004 Online only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online only Revised for MATLAB 7.0.4 (Release 14SP2)
June 2005 Second printing Minor revision for MATLAB 7.0.4
September 2005 Online only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online only Revised for MATLAB 7.2 (Release 2006a)
September 2006 Online only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online only Revised for Version 7.5 (Release 2007b)
March 2008 Online only Revised for Version 7.6 (Release 2008a)
October 2008 Online only Revised for Version 7.7 (Release 2008b)
March 2009 Online only Revised for Version 7.8 (Release 2009a)
September 2009 Online only Revised for Version 7.9 (Release 2009b)
March 2010 Online only Revised for Version 7.10 (Release 2010a)
September 2010 Online only Revised for Version 7.11 (Release 2010b)
April 2011 Online only Revised for Version 7.12 (Release 2011a)
September 2011 Online only Revised for Version 7.13 (Release 2011b)
March 2012 Online only Revised for Version 7.14 (Release 2012a)

Contents

Language

Syntax Basics

1
Create Variables . 1-2

Create Numeric Arrays . 1-3

Store Text in Character Strings . 1-5

Enter Multiple Statements on One Line 1-6

Continue Long Statements on Multiple Lines 1-7

Call Functions . 1-8

Ignore Function Outputs . 1-9

Variable Names . 1-10
Valid Names . 1-10
Conflicts with Function Names . 1-10

Case and Space Sensitivity . 1-12

Command vs. Function Syntax . 1-13
Command and Function Syntaxes . 1-13
Avoid Common Syntax Mistakes . 1-14
How MATLAB Recognizes Command Syntax 1-15

v

Program Components

2
Operators . 2-2
Arithmetic Operators . 2-2
Relational Operators . 2-3
Logical Operators . 2-4
Operator Precedence . 2-11

Special Values . 2-13

Conditional Statements . 2-15

Loop Control Statements . 2-17

Dates and Times . 2-19
Representing Dates and Times in MATLAB 2-19
Date and Time Functions . 2-20
Working with Date Strings . 2-21
Date String Tables . 2-26
Working with Date Vectors . 2-29
Working with Serial Date Numbers 2-33
Other Considerations . 2-36
Function Summary . 2-38

Regular Expressions . 2-40
Overview . 2-40
Calling Regular Expression Functions from MATLAB 2-42
Parsing Strings with Regular Expressions 2-46
Other Benefits of Using Regular Expressions 2-50
Metacharacters and Operators . 2-51
Character Type Operators . 2-53
Character Representation . 2-57
Grouping Operators . 2-58
Nonmatching Operators . 2-60
Positional Operators . 2-61
Lookaround Operators . 2-62
Quantifiers . 2-68
Tokens . 2-71
Named Capture . 2-76
Conditional Expressions . 2-78

vi Contents

Dynamic Regular Expressions . 2-80
String Replacement . 2-89
Handling Multiple Strings . 2-91
Function, Mode Options, Operator, Return Value
Summaries . 2-91

Comma-Separated Lists . 2-100
What Is a Comma-Separated List? 2-100
Generating a Comma-Separated List 2-100
Assigning Output from a Comma-Separated List 2-102
Assigning to a Comma-Separated List 2-103
How to Use the Comma-Separated Lists 2-104
Fast Fourier Transform Example . 2-106

String Evaluation . 2-108
Evaluate Expressions in Text Strings 2-108
Alternatives to the eval Function . 2-108

Shell Escape Functions . 2-113

Symbol Reference . 2-114
Asterisk — * . 2-115
At — @ . 2-115
Colon — : . 2-116
Comma — , . 2-117
Curly Braces — { } . 2-118
Dot — . 2-118
Dot-Dot — .. 2-119
Dot-Dot-Dot (Ellipsis) — ... 2-119
Dot-Parentheses — .() . 2-121
Exclamation Point — ! . 2-121
Parentheses — () . 2-121
Percent — % . 2-122
Percent-Brace — %{ %} . 2-123
Plus — + . 2-123
Semicolon — ; . 2-123
Single Quotes — ’ ’ . 2-124
Space Character . 2-125
Slash and Backslash — / \ . 2-125
Square Brackets — [] . 2-126
Tilde — ~ . 2-126

vii

Classes (Data Types)

Overview of MATLAB Classes

3
Fundamental MATLAB Classes . 3-2

How to Use the Different Classes . 3-4

Numeric Classes

4
Overview of Numeric Classes . 4-2

Integers . 4-3
Integer Classes . 4-3
Creating Integer Data . 4-4
Arithmetic Operations on Integer Classes 4-5
Largest and Smallest Values for Integer Classes 4-6
Integer Functions . 4-6

Floating-Point Numbers . 4-7
Double-Precision Floating Point . 4-7
Single-Precision Floating Point . 4-8
Creating Floating-Point Data . 4-8
Arithmetic Operations on Floating-Point Numbers 4-10
Largest and Smallest Values for Floating-Point Classes . . 4-11
Accuracy of Floating-Point Data . 4-12
Avoiding Common Problems with Floating-Point
Arithmetic . 4-14

Floating-Point Functions . 4-16
References . 4-16

Complex Numbers . 4-18
Creating Complex Numbers . 4-18
Complex Number Functions . 4-19

viii Contents

Infinity and NaN . 4-20
Infinity . 4-20
NaN . 4-20
Infinity and NaN Functions . 4-21

Identifying Numeric Classes . 4-22

Display Format for Numeric Values 4-23
Default Display . 4-23
Display Format Examples . 4-23
Setting Numeric Format in a Program 4-24

Function Summary . 4-26

The Logical Class

5
Overview of the Logical Class . 5-2

Identifying Logical Arrays . 5-4
Function Summary . 5-4
Examples of Identifying Logical Arrays 5-4

Functions that Return a Logical Result 5-6
Overview . 5-6
Examples of Functions that Return a Logical Result 5-6

Using Logical Arrays in Conditional Statements 5-9

Using Logical Arrays in Indexing 5-10

ix

Characters and Strings

6
Creating Character Arrays . 6-2
Creating a Character String . 6-2
Creating a Rectangular Character Array 6-3
Identifying Characters in a String . 6-4
Working with Space Characters . 6-5
Expanding Character Arrays . 6-6

Cell Arrays of Strings . 6-7
Converting to a Cell Array of Strings 6-7
Functions for Cell Arrays of Strings 6-8

Formatting Strings . 6-10
Functions that Use Format Strings 6-10
The Format String . 6-11
Input Value Arguments . 6-12
The Formatting Operator . 6-13
Constructing the Formatting Operator 6-14
Setting Field Width and Precision . 6-20
Restrictions for Using Identifiers . 6-23

String Comparisons . 6-25
Comparing Strings for Equality . 6-25
Comparing for Equality Using Operators 6-26
Categorizing Characters Within a String 6-27

Searching and Replacing . 6-28

Converting from Numeric to String 6-30
Function Summary . 6-30
Converting to a Character Equivalent 6-31
Converting to a String of Numbers 6-31
Converting to a Specific Radix . 6-31

Converting from String to Numeric 6-32
Function Summary . 6-32
Converting from a Character Equivalent 6-33
Converting from a Numeric String 6-33

x Contents

Converting from a Specific Radix . 6-34

Function Summary . 6-35

Structures

7
Create a Structure Array . 7-2

Access Data in a Structure Array . 7-6

Concatenate Structures . 7-9

Generate Field Names from Variables 7-11

Access Data in Nested Structures 7-12

Access Multiple Elements of a Nonscalar Struct
Array . 7-14

Ways to Organize Data in Structure Arrays 7-16
Plane Organization . 7-16
Element-by-Element Organization 7-18

Memory Requirements for a Structure Array 7-20

Cell Arrays

8
What Is a Cell Array? . 8-2

Create a Cell Array . 8-3

xi

Access Data in a Cell Array . 8-5

Add Cells to a Cell Array . 8-8

Delete Data from a Cell Array . 8-9

Combine Cell Arrays . 8-10

Pass Contents of Cell Arrays to Functions 8-11

Preallocate Memory for a Cell Array 8-14

Cell vs. Struct Arrays . 8-15

Multilevel Indexing to Access Parts of Cells 8-17

Function Handles

9
What Is a Function Handle? . 9-2

Creating a Function Handle . 9-3
Maximum Length of a Function Name 9-4
The Role of Scope, Precedence, and Overloading When
Creating a Function Handle . 9-4

Obtaining Permissions from Class Methods 9-5
Using Function Handles for Anonymous Functions 9-6
Arrays of Function Handles . 9-6

Calling a Function By Means of Its Handle 9-7
Calling Syntax . 9-7
Calling a Function with Multiple Outputs 9-8
Returning a Handle for Use Outside of a Function File . . . 9-8
Example — Using Function Handles in Optimization 9-9

Preserving Data from the Workspace 9-10

xii Contents

Preserving Data with Anonymous Functions 9-10
Preserving Data with Nested Functions 9-11

Applications of Function Handles 9-13
Example of Passing a Function Handle 9-13
Pass a Function to Another Function 9-13
Capture Data Values For Later Use By a Function 9-15
Call Functions Outside of Their Normal Scope 9-18
Save the Handle in a MAT-File for Use in a Later MATLAB
Session . 9-18

Saving and Loading Function Handles 9-19
Invalid or Obsolete Function Handles 9-19

Advanced Operations on Function Handles 9-20
Examining a Function Handle . 9-20
Converting to and from a String . 9-21
Comparing Function Handles . 9-23

Functions That Operate on Function Handles 9-27

Map Containers

10
Overview of the Map Data Structure 10-2

Description of the Map Class . 10-4
Properties of the Map Class . 10-4
Methods of the Map Class . 10-5

Creating a Map Object . 10-6
Constructing an Empty Map Object 10-6
Constructing An Initialized Map Object 10-7
Combining Map Objects . 10-8

Examining the Contents of the Map 10-9

xiii

Reading and Writing Using a Key Index 10-11
Reading From the Map . 10-11
Adding Key/Value Pairs . 10-12
Building a Map with Concatenation 10-13

Modifying Keys and Values in the Map 10-15
Removing Keys and Values from the Map 10-15
Modifying Values . 10-15
Modifying Keys . 10-16
Modifying a Copy of the Map . 10-16

Mapping to Different Value Types 10-18
Mapping to a Structure Array . 10-18
Mapping to a Cell Array . 10-19

Combining Unlike Classes

11
Valid Combinations of Unlike Classes 11-2

Combining Unlike Integer Types . 11-3
Overview . 11-3
Example of Combining Unlike Integer Sizes 11-4
Example of Combining Signed with Unsigned 11-4

Combining Integer and Noninteger Data 11-6

Combining Cell Arrays with Non-Cell Arrays 11-7

Empty Matrices . 11-8

Concatenation Examples . 11-9
Combining Single and Double Types 11-9
Combining Integer and Double Types 11-9
Combining Character and Double Types 11-10
Combining Logical and Double Types 11-10

xiv Contents

Using Objects

12
MATLAB Objects . 12-2
Getting Oriented . 12-2
Getting Comfortable with Objects . 12-2
What Are Objects and Why Use Them? 12-2
Accessing Objects . 12-3
Objects In the MATLAB Language 12-3
Other Kinds of Objects Used by MATLAB 12-4

General Purpose Vs. Specialized Arrays 12-5
How They Differ . 12-5
Using General-Purpose Data Structures 12-5
Using Specialized Objects . 12-6

Key Object Concepts . 12-8
Basic Concepts . 12-8
Classes Describe How to Create Objects 12-8
Properties Contain Data . 12-9
Methods Implement Operations . 12-9
Events are Notices Broadcast to Listening Objects 12-10

Creating Objects . 12-11
Class Constructor . 12-11
When to Use Package Names . 12-11

Accessing Object Data . 12-14
Listing Public Properties . 12-14
Getting Property Values . 12-14
Setting Property Values . 12-15

Calling Object Methods . 12-16
What Operations Can You Perform 12-16
Method Syntax . 12-16
Class of Objects Returned by Methods 12-18

Desktop Tools Are Object Aware . 12-19
Tab Completion Works with Objects 12-19
Editing Objects with the Variable Editor 12-19

xv

Getting Information About Objects 12-21
The Class of Workspace Variables . 12-21
Information About Class Members 12-23
Logical Tests for Objects . 12-23
Displaying Objects . 12-24
Getting Help for MATLAB Objects 12-25

Copying Objects . 12-26
Two Copy Behaviors . 12-26
Value Object Copy Behavior . 12-26
Handle Object Copy Behavior . 12-27
Testing for Handle or Value Class . 12-31

Destroying Objects . 12-33
Object Lifecycle . 12-33
Difference Between clear and delete 12-33

Defining Your Own Classes

13

Scripts and Functions

Program Files

14
Program Development . 14-2
Overview . 14-2
Creating a Program . 14-2
Getting the Bugs Out . 14-3
Cleaning Up the Program . 14-4
Improving Performance . 14-5
Checking It In . 14-6
Protecting Your Source Code . 14-6

Working with Functions in Files . 14-9
Overview . 14-9

xvi Contents

Types of Program Files . 14-9
Basic Parts of a Program File . 14-10
Creating a Program File . 14-15
Providing Help for Your Program . 14-17
Cleaning Up When the Function Completes 14-17

Scripts and Functions . 14-24
Scripts . 14-24
Functions . 14-25
Types of Functions . 14-26
Organizing Your Functions . 14-27
Identifying Dependencies . 14-27

Base and Function Workspaces . 14-29

Share Data Between Workspaces . 14-30
Best Practice: Passing Arguments . 14-30
Nested Functions . 14-31
Persistent Variables . 14-32
Global Variables . 14-32
Evaluating in Another Workspace . 14-33

Calling Functions . 14-35
What Happens When You Call a Function 14-35
Function Precedence Order . 14-35
Resolving Difficulties In Calling Functions 14-38
Calling External Functions . 14-43
Running External Programs . 14-43

Functions Provided By MATLAB . 14-44
Overview . 14-44
Functions . 14-44
Built-In Functions . 14-45
Overloaded MATLAB Functions . 14-46
Internal Utility Functions . 14-47

xvii

Types of Functions

15
Overview of MATLAB Function Types 15-2

Anonymous Functions . 15-3
Constructing an Anonymous Function 15-3
Arrays of Anonymous Functions . 15-6
Outputs from Anonymous Functions 15-7
Variables Used in the Expression . 15-8
Examples of Anonymous Functions 15-11

Primary Functions . 15-15

Nested Functions . 15-16
Writing Nested Functions . 15-16
Calling Nested Functions . 15-18
Variable Scope in Nested Functions 15-19
Using Function Handles with Nested Functions 15-21
Restrictions on Assigning to Variables 15-26
Examples of Nested Functions . 15-27

Subfunctions . 15-33
Overview . 15-33
Calling Subfunctions . 15-34
Accessing Help for a Subfunction . 15-34

Private Functions . 15-35
Overview . 15-35
Private Folders . 15-35
Accessing Help for a Private Function 15-36

Overloaded Functions . 15-37

xviii Contents

Function Arguments

16
Find Number of Function Arguments 16-2

Support Variable Number of Inputs 16-4

Support Variable Number of Outputs 16-6

Validate Number of Function Arguments 16-8

Argument Checking in Nested Functions 16-11

Ignore Function Inputs . 16-13

Check Function Inputs with validateattributes 16-14

Parse Function Inputs . 16-17

Input Parser Validation Functions 16-22

Programming Tips

17
Introduction . 17-2

Command and Function Syntax . 17-3
Syntax Help . 17-3
Command and Function Syntaxes . 17-3
Command Line Continuation . 17-3
Completing Commands Using the Tab Key 17-4
Recalling Commands . 17-4
Clearing Commands . 17-5
Suppressing Output to the Screen . 17-5

xix

Help . 17-6
Using the Help Browser . 17-6
Help on Functions from the Help Browser 17-6
Help on Functions from the Command Window 17-7
Topical Help . 17-7
Paged Output . 17-8
Writing Your Own Help . 17-8
Help for Subfunctions and Private Functions 17-8
Help for Methods and Overloaded Functions 17-9

Development Environment . 17-10
Workspace Browser . 17-10
Using the Find Utility . 17-10
Commenting Out a Block of Code . 17-11
Creating Functions from Command History 17-11
Editing Functions in EMACS . 17-11

Functions . 17-12
Function Structure . 17-12
Using Lowercase for Function Names 17-12
Getting a Function’s Name and Path 17-13
What Files Does a Function Use? . 17-13
Dependent Functions, Built-Ins, Classes 17-14

Function Arguments . 17-15
Getting the Input and Output Arguments 17-15
Variable Numbers of Arguments . 17-15
String or Numeric Arguments . 17-16
Passing Arguments in a Structure . 17-16
Passing Arguments in a Cell Array 17-16

Program Development . 17-18
Planning the Program . 17-18
Using Pseudo-Code . 17-18
Selecting the Right Data Structures 17-18
General Coding Practices . 17-19
Naming a Function Uniquely . 17-19
The Importance of Comments . 17-19
Coding in Steps . 17-20
Making Modifications in Steps . 17-20
Functions with One Calling Function 17-20
Testing the Final Program . 17-20

xx Contents

Debugging . 17-21
The MATLAB Debug Functions . 17-21
More Debug Functions . 17-21
The MATLAB Graphical Debugger 17-22
A Quick Way to Examine Variables 17-22
Setting Breakpoints from the Command Line 17-22
Finding Line Numbers to Set Breakpoints 17-23
Stopping Execution on an Error or Warning 17-23
Locating an Error from the Error Message 17-23
Using Warnings to Help Debug . 17-23
Making Code Execution Visible . 17-24
Debugging Scripts . 17-24

Variables . 17-25
Rules for Variable Names . 17-25
Making Sure Variable Names Are Valid 17-25
Do Not Use Function Names for Variables 17-26
Checking for Reserved Keywords . 17-26
Avoid Using i and j for Variables . 17-26
Avoid Overwriting Variables in Scripts 17-27
Persistent Variables . 17-27
Protecting Persistent Variables . 17-27
Global Variables . 17-27

Strings . 17-29
Creating Strings with Concatenation 17-29
Comparing Methods of Concatenation 17-29
Store Arrays of Strings in a Cell Array 17-30
Converting Between Strings and Cell Arrays 17-30
Search and Replace Using Regular Expressions 17-30

Evaluating Expressions . 17-32
Find Alternatives to Using eval . 17-32
Assigning to a Series of Variables . 17-32
Short-Circuit Logical Operators . 17-32
Changing the Counter Variable within a for Loop 17-33

MATLAB Path . 17-34
Precedence Rules . 17-34
Adding a Folder to the Search Path 17-35
Handles to Functions Not on the Path 17-35
Making Toolbox File Changes Visible to MATLAB 17-36

xxi

Making Nontoolbox File Changes Visible to MATLAB 17-36
Change Notification on Windows . 17-37

Program Control . 17-38
Using break, continue, and return . 17-38
Using switch Versus if . 17-39
MATLAB case Evaluates Strings . 17-39
Multiple Conditions in a case Statement 17-39
Implicit Break in switch-case . 17-39
Variable Scope in a switch . 17-40
Catching Errors with try-catch . 17-40
Nested try-catch Blocks . 17-41
Forcing an Early Return from a Function 17-41

Save and Load . 17-42
Saving Data from the Workspace . 17-42
Loading Data into the Workspace . 17-42
Viewing Variables in a MAT-File . 17-43
Appending to a MAT-File . 17-43
Save and Load on Startup or Quit . 17-44
Saving to an ASCII File . 17-44

Files and Filenames . 17-45
Naming Functions . 17-45
Naming Other Files . 17-45
Passing Filenames as Arguments . 17-46
Passing Filenames to ASCII Files . 17-46
Determining Filenames at Run-Time 17-46
Returning the Size of a File . 17-46

Input/Output . 17-48
Common I/O Functions . 17-48
Loading Mixed Format Data . 17-48
Reading Files with Different Formats 17-49
Interactive Input into Your Program 17-49

Starting MATLAB . 17-50
Getting MATLAB to Start Up Faster 17-50

Operating System Compatibility . 17-51
Executing O/S Commands from MATLAB 17-51

xxii Contents

Searching Text with grep . 17-51
Constructing Paths and Filenames 17-51
Finding the MATLAB Root Folder . 17-52
Temporary Directories and Filenames 17-52

For More Information . 17-53
Current CSSM . 17-53
Archived CSSM . 17-53
MATLAB Technical Support . 17-53
MATLAB Central . 17-53
MATLAB Newsletters (Digest, News & Notes) 17-53
MATLAB Documentation . 17-53
MATLAB Index of Examples . 17-54

Software Development

Error Handling

18
Error Reporting in a MATLAB Application 18-2
Overview . 18-2
Getting an Exception at the Command Line 18-2
Getting an Exception in Your Program Code 18-3
Generating a New Exception . 18-4

Capturing Information About the Error 18-5
Overview . 18-5
The MException Class . 18-5
Properties of the MException Class 18-7
Methods of the MException Class . 18-14

Throwing an Exception . 18-16

Responding to an Exception . 18-18
Overview . 18-18
The try-catch Statement . 18-18
Suggestions on How to Handle an Exception 18-20

xxiii

Warnings . 18-23
Reporting a Warning . 18-23
Identifying the Cause . 18-24

Warning Control . 18-25
Overview . 18-25
Warning Statements . 18-26
Warning Control Statements . 18-27
Output from Control Statements . 18-30
Saving and Restoring State . 18-32
Backtrace and Verbose Modes . 18-33

Debugging Errors and Warnings . 18-37

Program Scheduling

19
Using a MATLAB Timer Object . 19-2
Overview . 19-2
Example: Displaying a Message . 19-3

Creating Timer Objects . 19-5
Creating the Object . 19-5
Naming the Object . 19-6

Working with Timer Object Properties 19-7
Retrieving the Value of Timer Object Properties 19-7
Setting the Value of Timer Object Properties 19-8

Starting and Stopping Timers . 19-10
Starting a Timer . 19-10
Starting a Timer at a Specified Time 19-10
Stopping Timer Objects . 19-11
Blocking the MATLAB Command Line 19-12

Creating and Executing Callback Functions 19-14
Associating Commands with Timer Object Events 19-14
Creating Callback Functions . 19-15

xxiv Contents

Specifying the Value of Callback Function Properties 19-17

Timer Object Execution Modes . 19-19
Executing a Timer Callback Function Once 19-19
Executing a Timer Callback Function Multiple Times 19-20
Handling Callback Function Queuing Conflicts 19-21

Deleting Timer Objects from Memory 19-23
Deleting One or More Timer Objects 19-23
Testing the Validity of a Timer Object 19-23

Finding Timer Objects in Memory 19-24
Finding All Timer Objects . 19-24
Finding Invisible Timer Objects . 19-24

Performance

20
Analyzing Your Program’s Performance 20-2
Overview . 20-2
The Profiler Utility . 20-2
Stopwatch Timer Functions . 20-2

Techniques for Improving Performance 20-4
Preallocating Arrays . 20-4
Limiting Size and Complexity . 20-5
Assigning to Variables . 20-6
Using Appropriate Logical Operators 20-7
Overloading Built-In Functions . 20-7
Functions Are Generally Faster Than Scripts 20-8
Load and Save Are Faster Than File I/O Functions 20-8
Vectorizing Loops . 20-8
Avoid Large Background Processes 20-11

xxv

Memory Usage

21
Memory Allocation . 21-2
Memory Allocation for Arrays . 21-2
Data Structures and Memory . 21-6

Memory Management Functions . 21-12
The whos Function . 21-13

Strategies for Efficient Use of Memory 21-15
Ways to Reduce the Amount of Memory Required 21-15
Using Appropriate Data Storage . 21-17
How to Avoid Fragmenting Memory 21-20
Reclaiming Used Memory . 21-21

Resolving “Out of Memory” Errors 21-23
General Suggestions for Reclaiming Memory 21-23
Setting the Process Limit . 21-24
Disabling Java VM on Startup . 21-25
Increasing System Swap Space . 21-26
Using the 3GB Switch on Windows Systems 21-26
Freeing Up System Resources on Windows Systems 21-27

Create Help and Demos

22
Types of Help You Can Create . 22-2

Add Help for Your Program Files 22-4
Help Within a Program File . 22-4
Help Summary for Your Program Files (Contents.m) 22-6
Help for Classes You Create . 22-7

Add Documentation to the Help Browser 22-12
Types of Documentation You Can Provide 22-12
Learning to Add Help from Examples 22-13

xxvi Contents

Summary of Creating and Installing HTML Help Files . . . 22-14
Organizing Your Documentation . 22-15
Creating Function Reference Pages 22-28
Creating Function and Block Category Listings 22-33
Making Your HTML Help Files Searchable 22-40
Summary of Workflow for Providing HTML Help Files . . . 22-42

Add Demos to the Help Browser . 22-48
About Creating Demos . 22-48
Providing Demos to Others . 22-56

Address Validation Errors for info.xml Files 22-57
About XML File Validation . 22-57
Entities Missing or Out of Order in info.xml 22-57
Unrelated info.xml File . 22-58
Invalid Constructs in info.xml File 22-58
Outdated info.xml File for a MathWorks Product 22-58

Index

xxvii

xxviii Contents

Language

• Chapter 1, “Syntax Basics”

• Chapter 2, “Program Components”

1

Syntax Basics

• “Create Variables” on page 1-2

• “Create Numeric Arrays” on page 1-3

• “Store Text in Character Strings” on page 1-5

• “Enter Multiple Statements on One Line” on page 1-6

• “Continue Long Statements on Multiple Lines” on page 1-7

• “Call Functions” on page 1-8

• “Ignore Function Outputs” on page 1-9

• “Variable Names” on page 1-10

• “Case and Space Sensitivity” on page 1-12

• “Command vs. Function Syntax” on page 1-13

1 Syntax Basics

Create Variables
This example shows several ways to assign a value to a variable.

x = 5.71;
A = [1 2 3; 4 5 6; 7 8 9];
I = besseli(x,A);

You do not have to declare variables before assigning values.

If you do not end an assignment statement with a semicolon (;), MATLAB®

displays the result in the Command Window. For example,

x = 5.71

displays

x =
5.7100

If you do not explicitly assign the output of a command to a variable, MATLAB
generally assigns the result to the reserved word ans. For example,

5.71

returns

ans =
5.7100

The value of ans changes with every command that returns an output value
that is not assigned to a variable.

1-2

Create Numeric Arrays

Create Numeric Arrays
This example shows how to create a numeric variable. In the MATLAB
computing environment, all variables are arrays, and by default, numeric
variables are of type double (that is, double-precision values). For example,
create a scalar value.

A = 100;

Because scalar values are single element, 1-by-1 arrays,

whos A

returns

Name Size Bytes Class Attributes

A 1x1 8 double

To create a matrix (a two-dimensional, rectangular array of numbers), you
can use the [] operator.

B = [12, 62, 93, -8, 22; 16, 2, 87, 43, 91; -4, 17, -72, 95, 6]

When using this operator, separate columns with a comma or space, and
separate rows with a semicolon. All rows must have the same number of
elements. In this example, B is a 3-by-5 matrix (that is, B has three rows
and five columns).

B =
12 62 93 -8 22
16 2 87 43 91
-4 17 -72 95 6

A matrix with only one row or column (that is, a 1-by-n or n-by-1 array) is
a vector, such as

C = [1, 2, 3]

or

D = [10; 20; 30]

1-3

1 Syntax Basics

For more information, see:

• “Multidimensional Arrays”

• “Matrix Indexing”

1-4

Store Text in Character Strings

Store Text in Character Strings
This example shows how to create a character string.

myString = 'Hello, world';

If the text contains a single quotation mark, include two quotation marks
within the string definition:

otherString = 'You''re right';

In the MATLAB computing environment, all variables are arrays, and strings
are of type char (character arrays). For example,

whos myString

returns

Name Size Bytes Class Attributes

myString 1x12 24 char

1-5

1 Syntax Basics

Enter Multiple Statements on One Line
This example shows how to enter more than one command on the same line.

A = magic(5), B = ones(5) * 4.7; C = A./B

To distinguish between commands, end each one with a comma or semicolon.
Commands that end with a comma display their results, while commands
that end with a semicolon do not.

A =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

C =
3.6170 5.1064 0.2128 1.7021 3.1915
4.8936 1.0638 1.4894 2.9787 3.4043
0.8511 1.2766 2.7660 4.2553 4.6809
2.1277 2.5532 4.0426 4.4681 0.6383
2.3404 3.8298 5.3191 0.4255 1.9149

1-6

Continue Long Statements on Multiple Lines

Continue Long Statements on Multiple Lines
This example shows how to continue a statement to the next line using
ellipses (...).

s = 1 - 1/2 + 1/3 - 1/4 + 1/5 ...
- 1/6 + 1/7 - 1/8 + 1/9;

Build a long character string by concatenating shorter strings together:

mystring = ['Accelerating the pace of ' ...
'engineering and science'];

The start and end quotation marks for a string must appear on the same
line. For example, this code returns an error, because each line contains only
one quotation mark:

mystring = 'Accelerating the pace of ...
engineering and science'

An ellipses outside a quoted string is equivalent to a space. For example,

x = [1.23...
4.56];

is the same as

x = [1.23 4.56];

1-7

1 Syntax Basics

Call Functions
These examples show how to call a MATLAB function. To run the examples,
you must first create numeric arrays A and B, such as:

A = [1 3 5];
B = [10 6 4];

Enclose inputs to functions in parentheses:

max(A)

Separate multiple inputs with commas:

max(A,B)

Store output from a function by assigning it to a variable:

maxA = max(A)

Enclose multiple outputs in square brackets:

[maxA, location] = max(A)

Call a function that does not require any inputs, and does not return any
outputs, by typing only the function name:

clc

Enclose text string inputs in single quotation marks:

disp('hello world')

1-8

Ignore Function Outputs

Ignore Function Outputs
This example shows how to request specific outputs from a function.

Request all three possible outputs from the fileparts function.

helpFile = which('help');
[helpPath,name,ext] = fileparts(helpFile);

The current workspace now contains three variables from fileparts:
helpPath, name, and ext. In this case, the variables are small. However,
some functions return results that use much more memory. If you do not need
those variables, they waste space on your system.

Request only the first output, ignoring the second and third.

helpPath = fileparts(helpFile);

For any function, you can request only the first N outputs (where N is less
than or equal to the number of possible outputs) and ignore any remaining
outputs. If you request more than one output, enclose the variable names in
square brackets, [].

Ignore the first output using a tilde (~).

[~,name,ext] = fileparts(helpFile);

You can ignore any number of function outputs, in any position in the
argument list. Separate consecutive tildes with a comma, such as

[~,~,ext] = fileparts(helpFile);

1-9

1 Syntax Basics

Variable Names

In this section...

“Valid Names” on page 1-10

“Conflicts with Function Names” on page 1-10

Valid Names
A valid variable name starts with a letter, followed by letters, digits, or
underscores. MATLAB is case sensitive, so A and a are not the same variable.
The maximum length of a variable name is the value that the namelengthmax
command returns.

You cannot define variables with the same names as MATLAB keywords,
such as if or end. For a complete list, run the iskeyword command.

Examples of valid names: Invalid names:

x6 6x

lastValue end

n_factorial n!

Conflicts with Function Names
Avoid creating variables with the same name as a function (such as i, j,
mode, char, size, and path). In general, variable names take precedence over
function names. If you create a variable that uses the name of a function, you
sometimes get unexpected results.

Check whether a proposed name is already in use with the exist or which
function. exist returns 0 if there are no existing variables, functions, or other
artifacts with the proposed name. For example:

exist checkname

ans =
0

1-10

Variable Names

If you inadvertently create a variable with a name conflict, remove the
variable from memory with the clear function.

Another potential source of name conflicts occurs when you define a function
that calls load or eval (or similar functions) to add variables to the
workspace. In some cases, load or eval add variables that have the same
names as functions. Unless these variables are in the function workspace
before the call to load or eval, the MATLAB parser interprets the variable
names as function names. For more information, see:

• “Troubleshooting: Loading Variables within a Function”

• “Alternatives to the eval Function” on page 2-108

See Also clear | exist | iskeyword | namelengthmax | which

1-11

1 Syntax Basics

Case and Space Sensitivity
MATLAB code is sensitive to casing, but insensitive to blank spaces.

Upper and Lowercase

In MATLAB code, use an exact match with regard to case for variables, files,
and functions. For example, if you have a variable a, you cannot refer to
that variable as A. It is a best practice to use lowercase only when naming
functions. This is especially useful when you use both Microsoft® Windows®

and UNIX®1 platforms because their file systems behave differently with
regard to case.

When you use the help function, the help displays some function names in
all uppercase, for example, PLOT, solely to distinguish a function name from
the rest of the text. Some functions for interfacing to Sun Microsystems™
Java™ software do use mixed case and the command-line help and the
documentation accurately reflect that.

Spaces

Blank spaces around operators such as -, :, and (), are optional, but they
can improve readability. For example, MATLAB interprets the following
statements the same way.

y = sin (3 * pi) / 2
y=sin(3*pi)/2

1. UNIX is a registered trademark of The Open Group in the United States and other
countries.

1-12

Command vs. Function Syntax

Command vs. Function Syntax

In this section...

“Command and Function Syntaxes” on page 1-13

“Avoid Common Syntax Mistakes” on page 1-14

“How MATLAB Recognizes Command Syntax” on page 1-15

Command and Function Syntaxes
In MATLAB, these statements are equivalent:

load durer.mat % Command syntax
load('durer.mat') % Function syntax

This equivalence is sometimes referred to as command-function duality.

All functions support this standard function syntax:

[output1, ..., outputM] = functionName(input1, ..., inputN)

If you do not require any outputs from the function, and all of the inputs
are literal strings (that is, text enclosed in single quotation marks), you can
use this simpler command syntax:

functionName input1 ... inputN

With command syntax, you separate inputs with spaces rather than commas,
and do not enclose input arguments in parentheses. Because all inputs are
literal strings, single quotation marks are optional, unless the input string
contains spaces. For example:

disp 'hello world'

When a function input is a variable, you must use function syntax to pass the
value to the function. Command syntax always passes inputs as literal text
and cannot pass variable values. For example, create a variable and call the
disp function with function syntax to pass the value of the variable:

A = 123;
disp(A)

1-13

1 Syntax Basics

This code returns the expected result,

123

You cannot use command syntax to pass the value of A, because this call

disp A

is equivalent to

disp('A')

and returns

A

Avoid Common Syntax Mistakes
Suppose that your workspace contains these variables:

filename = 'accounts.txt';
A = int8(1:8);
B = A;

The following table illustrates common misapplications of command syntax.

This Command... Is Equivalent to... Correct Syntax for Passing
Value

open filename open('filename') open(filename)

isequal A B isequal('A','B') isequal(A,B)

strcmp class(A) int8 strcmp('class(A)','int8') strcmp(class(A),'int8')

cd matlabroot cd('matlabroot') cd(matlabroot)

isnumeric 500 isnumeric('500') isnumeric(500)

round 3.499 round('3.499'), same as
round([51 46 52 57 57])

round(3.499)

Passing Variable Names
Some functions expect literal strings for variable names, such as save, load,
clear, and whos. For example,

1-14

Command vs. Function Syntax

whos -file durer.mat X

requests information about variable X in the demo file durer.mat. This
command is equivalent to

whos('-file','durer.mat','X')

How MATLAB Recognizes Command Syntax
Consider the potentially ambiguous statement

ls ./d

This could be a call to the ls function with the folder ./d as its argument. It
also could request elementwise division on the array ls, using the variable
d as the divisor.

If you issue such a statement at the command line, MATLAB can access the
current workspace and path to determine whether ls and d are functions or
variables. However, some components, such as the Code Analyzer and the
Editor/Debugger, operate without reference to the path or workspace. In those
cases, MATLAB uses syntactic rules to determine whether an expression is a
function call using command syntax.

In general, when MATLAB recognizes an identifier (which might name a
function or a variable), it analyzes the characters that follow the identifier to
determine the type of expression, as follows:

• An equal sign (=) implies assignment. For example:

ls =d

• An open parenthesis after an identifier implies a function call. For example:

ls('./d')

• Space after an identifier, but not after a potential operator, implies a
function call using command syntax. For example:

ls ./d

1-15

1 Syntax Basics

• Spaces on both sides of a potential operator, or no spaces on either side
of the operator, imply an operation on variables. For example, these
statements are equivalent:

ls ./ d

ls./d

Therefore, the potentially ambiguous statement ls ./d is a call to the ls
function using command syntax.

The best practice is to avoid defining variable names that conflict with
common functions, to prevent any ambiguity.

1-16

2

Program Components

• “Operators” on page 2-2

• “Special Values” on page 2-13

• “Conditional Statements” on page 2-15

• “Loop Control Statements” on page 2-17

• “Dates and Times” on page 2-19

• “Regular Expressions” on page 2-40

• “Comma-Separated Lists” on page 2-100

• “String Evaluation” on page 2-108

• “Shell Escape Functions” on page 2-113

• “Symbol Reference” on page 2-114

2 Program Components

Operators

In this section...

“Arithmetic Operators” on page 2-2

“Relational Operators” on page 2-3

“Logical Operators” on page 2-4

“Operator Precedence” on page 2-11

Arithmetic Operators
Arithmetic operators perform numeric computations, for example, adding two
numbers or raising the elements of an array to a given power. The following
table provides a summary. For more information, see the arithmetic operators
reference page.

Operator Description

+ Addition

- Subtraction

.* Multiplication

./ Right division

.\ Left division

+ Unary plus

- Unary minus

: Colon operator

.^ Power

.' Transpose

' Complex conjugate transpose

* Matrix multiplication

/ Matrix right division

\ Matrix left division

^ Matrix power

2-2

../ref/arithmeticoperators.html

Operators

Arithmetic Operators and Arrays
Except for some matrix operators, MATLAB arithmetic operators work on
corresponding elements of arrays with equal dimensions. For vectors and
rectangular arrays, both operands must be the same size unless one is a
scalar. If one operand is a scalar and the other is not, MATLAB applies
the scalar to every element of the other operand—this property is known
as scalar expansion.

This example uses scalar expansion to compute the product of a scalar
operand and a matrix.

A = magic(3)
A =

8 1 6
3 5 7
4 9 2

3 * A
ans =

24 3 18
9 15 21

12 27 6

Relational Operators
Relational operators compare operands quantitatively, using operators like
“less than” and “not equal to.” The following table provides a summary. For
more information, see the relational operators reference page.

Operator Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

~= Not equal to

2-3

../ref/relationaloperators.html

2 Program Components

Relational Operators and Arrays
The MATLAB relational operators compare corresponding elements
of arrays with equal dimensions. Relational operators always operate
element-by-element. In this example, the resulting matrix shows where an
element of A is equal to the corresponding element of B.

A = [2 7 6;9 0 5;3 0.5 6];
B = [8 7 0;3 2 5;4 -1 7];

A == B
ans =

0 1 0
0 0 1
0 0 0

For vectors and rectangular arrays, both operands must be the same size
unless one is a scalar. For the case where one operand is a scalar and the
other is not, MATLAB tests the scalar against every element of the other
operand. Locations where the specified relation is true receive logical 1.
Locations where the relation is false receive logical 0.

Relational Operators and Empty Arrays
The relational operators work with arrays for which any dimension has size
zero, as long as both arrays are the same size or one is a scalar. However,
expressions such as

A == []

return an error if A is not 0-by-0 or 1-by-1. This behavior is consistent with
that of all other binary operators, such as +, -, >, <, &, |, etc.

To test for empty arrays, use the function

isempty(A)

Logical Operators
MATLAB offers three types of logical operators and functions:

• Element-wise — operate on corresponding elements of logical arrays.

2-4

Operators

• Bit-wise — operate on corresponding bits of integer values or arrays.

• Short-circuit — operate on scalar, logical expressions.

The values returned by MATLAB logical operators and functions, with the
exception of bit-wise functions, are of type logical and are suitable for use
with logical indexing.

Element-Wise Operators and Functions
The following logical operators and functions perform elementwise logical
operations on their inputs to produce a like-sized output array.

The examples shown in the following table use vector inputs A and B, where

A = [0 1 1 0 1];
B = [1 1 0 0 1];

Operator Description Example

& Returns 1 for every element location that is
true (nonzero) in both arrays, and 0 for all other
elements.

A & B =
01001

| Returns 1 for every element location that is
true (nonzero) in either one or the other, or both
arrays, and 0 for all other elements.

A | B =
11101

~ Complements each element of the input array, A. ~A =
10010

xor Returns 1 for every element location that is true
(nonzero) in only one array, and 0 for all other
elements.

xor(A,B)
= 10100

For operators and functions that take two array operands, (&, |, and xor),
both arrays must have equal dimensions, with each dimension being the
same size. The one exception to this is where one operand is a scalar and the
other is not. In this case, MATLAB tests the scalar against every element
of the other operand.

2-5

2 Program Components

Note MATLAB converts any finite nonzero, numeric values used as inputs to
logical expressions to logical 1, or true.

Operator Overloading. You can overload the &, |, and ~ operators to make
their behavior dependent upon the class on which they are being used. Each
of these operators has a representative function that is called whenever that
operator is used. These are shown in the table below.

Logical
Operation Equivalent Function

A & B and(A, B)

A | B or(A, B)

~A not(A)

Other Array Functions. Two other MATLAB functions that operate
logically on arrays, but not in an elementwise fashion, are any and all. These
functions show whether any or all elements of a vector, or a vector within
a matrix or an array, are nonzero.

When used on a matrix, any and all operate on the columns of the matrix.
When used on an N-dimensional array, they operate on the first nonsingleton
dimension of the array. Or, you can specify an additional dimension input to
operate on a specific dimension of the array.

The examples shown in the following table use array input A, where

A = [0 1 2;
0 -3 8;
0 5 0];

2-6

Operators

Function Description Example

any(A) Returns 1 for a vector where any element
of the vector is true (nonzero), and 0 if no
elements are true.

any(A) ans = 0
1 1

all(A) Returns 1 for a vector where all elements of
the vector are true (nonzero), and 0 if all
elements are not true.

all(A) ans = 0
1 0

Note The all and any functions ignore any NaN values in the input arrays.

Short-Circuiting in Elementwise Operators. When used in the context of
an if or while expression, and only in this context, the elementwise | and &
operators use short-circuiting in evaluating their expressions. That is, A|B
and A&B ignore the second operand, B, if the first operand, A, is sufficient to
determine the result.

So, although the statement 1|[] evaluates to false, the same statement
evaluates to true when used in either an if or while expression:

A = 1; B = [];
if(A|B) disp 'The statement is true', end;

The statement is true

while the reverse logical expression, which does not short-circuit, evaluates
to false

if(B|A) disp 'The statement is true', end;

Another example of short-circuiting with elementwise operators shows that a
logical expression such as the following, which under most circumstances is
invalid due to a size mismatch between A and B,

A = [1 1]; B = [2 0 1];
A|B % This generates an error.

works within the context of an if or while expression:

if (A|B) disp 'The statement is true', end;

2-7

2 Program Components

The statement is true

Logical Expressions Using the find Function. The find function
determines the indices of array elements that meet a given logical condition.
The function is useful for creating masks and index matrices. In its most
general form, find returns a single vector of indices. This vector can be used
to index into arrays of any size or shape.

For example,

A = magic(4)
A =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

i = find(A > 8);
A(i) = 100
A =

100 2 3 100
5 100 100 8

100 7 6 100
4 100 100 1

Note An alternative to using find in this context is to index into the matrix
using the logical expression itself. See the example below.

The last two statements of the previous example can be replaced with this
one statement:

A(A > 8) = 100;

You can also use find to obtain both the row and column indices of a
rectangular matrix for the array values that meet the logical condition:

A = magic(4)
A =

16 2 3 13

2-8

Operators

5 11 10 8
9 7 6 12
4 14 15 1

[row, col] = find(A > 12)
row =

1
4
4
1

col =
1
2
3
4

Bit-Wise Functions
The following functions perform bit-wise logical operations on nonnegative
integer inputs. Inputs may be scalar or in arrays. If in arrays, these functions
produce a like-sized output array.

The examples shown in the following table use scalar inputs A and B, where

A = 28; % binary 11100
B = 21; % binary 10101

Function Description Example

bitand Returns the bit-wise AND
of two nonnegative integer
arguments.

bitand(A,B) = 20 (binary
10100)

bitor Returns the bit-wise OR
of two nonnegative integer
arguments.

bitor(A,B) = 29 (binary
11101)

2-9

2 Program Components

Function Description Example

bitcmp Returns the bit-wise
complement as an n-bit
number, where n is the
second input argument to
bitcmp.

bitcmp(A,5) = 3 (binary
00011)

bitxor Returns the bit-wise exclusive
OR of two nonnegative integer
arguments.

bitxor(A,B) = 9 (binary
01001)

Short-Circuit Operators
The following operators perform AND and OR operations on logical
expressions containing scalar values. They are short-circuit operators in
that they evaluate their second operand only when the result is not fully
determined by the first operand.

Operator Description

&& Returns logical 1 (true) if both inputs evaluate to true, and
logical 0 (false) if they do not.

|| Returns logical 1 (true) if either input, or both, evaluate to
true, and logical 0 (false) if they do not.

The statement shown here performs an AND of two logical terms, A and B:

A && B

If A equals zero, then the entire expression will evaluate to logical 0 (false),
regardless of the value of B. Under these circumstances, there is no need
to evaluate B because the result is already known. In this case, MATLAB
short-circuits the statement by evaluating only the first term.

A similar case is when you OR two terms and the first term is true. Again,
regardless of the value of B, the statement will evaluate to true. There is no
need to evaluate the second term, and MATLAB does not do so.

2-10

Operators

Advantage of Short-Circuiting. You can use the short-circuit operators
to evaluate an expression only when certain conditions are satisfied. For
example, you want to execute a function only if the function file resides on
the current MATLAB path.

Short-circuiting keeps the following code from generating an error when the
file, myfun.m, cannot be found:

comp = (exist('myfun.m') == 2) && (myfun(x) >= y)

Similarly, this statement avoids attempting to divide by zero:

x = (b ~= 0) && (a/b > 18.5)

You can also use the && and || operators in if and while statements to take
advantage of their short-circuiting behavior:

if (nargin >= 3) && (ischar(varargin{3}))

Operator Precedence
You can build expressions that use any combination of arithmetic, relational,
and logical operators. Precedence levels determine the order in which
MATLAB evaluates an expression. Within each precedence level, operators
have equal precedence and are evaluated from left to right. The precedence
rules for MATLAB operators are shown in this list, ordered from highest
precedence level to lowest precedence level:

1 Parentheses ()

2 Transpose (.'), power (.^), complex conjugate transpose ('), matrix power
(^)

3 Unary plus (+), unary minus (-), logical negation (~)

4 Multiplication (.*), right division (./), left division (.\), matrix
multiplication (*), matrix right division (/), matrix left division (\)

5 Addition (+), subtraction (-)

6 Colon operator (:)

2-11

2 Program Components

7 Less than (<), less than or equal to (<=), greater than (>), greater than or
equal to (>=), equal to (==), not equal to (~=)

8 Element-wise AND (&)

9 Element-wise OR (|)

10 Short-circuit AND (&&)

11 Short-circuit OR (||)

Precedence of AND and OR Operators
MATLAB always gives the & operator precedence over the | operator.
Although MATLAB typically evaluates expressions from left to right, the
expression a|b&c is evaluated as a|(b&c). It is a good idea to use parentheses
to explicitly specify the intended precedence of statements containing
combinations of & and |.

The same precedence rule holds true for the && and || operators.

Overriding Default Precedence
The default precedence can be overridden using parentheses, as shown in
this example:

A = [3 9 5];
B = [2 1 5];
C = A./B.^2
C =

0.7500 9.0000 0.2000

C = (A./B).^2
C =

2.2500 81.0000 1.0000

2-12

Special Values

Special Values
Several functions return important special values that you can use in your
own program files.

Function Return Value

ans Most recent answer (variable). If you do not assign
an output variable to an expression, MATLAB
automatically stores the result in ans.

eps Floating-point relative accuracy. This is the
tolerance the MATLAB software uses in its
calculations.

intmax Largest 8-, 16-, 32-, or 64-bit integer your computer
can represent.

intmin Smallest 8-, 16-, 32-, or 64-bit integer your
computer can represent.

realmax Largest floating-point number your computer can
represent.

realmin Smallest positive floating-point number your
computer can represent.

pi 3.1415926535897...

i, j Imaginary unit.

inf Infinity. Calculations like n/0, where n is any
nonzero real value, result in inf.

NaN Not a Number, an invalid numeric value.
Expressions like 0/0 and inf/inf result in a NaN,
as do arithmetic operations involving a NaN. Also, if
n is complex with a zero real part, then n/0 returns
a value with a NaN real part.

computer Computer type.

version MATLAB version string.

2-13

2 Program Components

Here are some examples that use these values in MATLAB expressions.

x = 2 * pi
x =

6.2832

A = [3+2i 7-8i]
A =

3.0000 + 2.0000i 7.0000 - 8.0000i

tol = 3 * eps
tol =

6.6613e-016

intmax('uint64')
ans =

18446744073709551615

2-14

Conditional Statements

Conditional Statements
Conditional statements enable you to select at run time which block of code to
execute. The simplest conditional statement is an if statement. For example:

% Generate a random number
a = randi(100, 1);

% If it is even, divide by 2
if rem(a, 2) == 0

disp('a is even')
b = a/2;

end

if statements can include alternate choices, using the optional keywords
elseif or else. For example:

a = randi(100, 1);

if a < 30
disp('small')

elseif a < 80
disp('medium')

else
disp('large')

end

Alternatively, when you want to test for equality against a set of known
values, use a switch statement. For example:

[dayNum, dayString] = weekday(date, 'long', 'en_US');

switch dayString
case 'Monday'

disp('Start of the work week')
case 'Tuesday'

disp('Day 2')
case 'Wednesday'

disp('Day 3')
case 'Thursday'

disp('Day 4')

2-15

2 Program Components

case 'Friday'
disp('Last day of the work week')

otherwise
disp('Weekend!')

end

For both if and switch, MATLAB executes the code corresponding to the
first true condition, and then exits the code block. Each conditional statement
requires the end keyword.

In general, when you have many possible discrete, known values, switch
statements are easier to read than if statements. However, you cannot test
for inequality between switch and case values. For example, you cannot
implement this type of condition with a switch:

yourNumber = input('Enter a number: ');

if yourNumber < 0
disp('Negative')

elseif yourNumber > 0
disp('Positive')

else
disp('Zero')

end

2-16

Loop Control Statements

Loop Control Statements
With loop control statements, you can repeatedly execute a block of code.
There are two types of loops:

• for statements loop a specific number of times, and keep track of each
iteration with an incrementing index variable.

For example, preallocate a 10-element vector, and calculate five values:

x = ones(1,10);
for n = 2:6

x(n) = 2 * x(n - 1);
end

• while statements loop as long as a condition remains true.

For example, find the first integer n for which factorial(n) is a 100-digit
number:

n = 1;
nFactorial = 1;
while nFactorial < 1e100

n = n + 1;
nFactorial = nFactorial * n;

end

Each loop requires the end keyword.

It is a good idea to indent the loops for readability, especially when they are
nested (that is, when one loop contains another loop):

A = zeros(5,100);
for m = 1:5

for n = 1:100
A(m, n) = 1/(m + n - 1);

end
end

You can programmatically exit a loop using a break statement, or skip to
the next iteration of a loop using a continue statement. For example, count

2-17

2 Program Components

the number of lines in the help for the magic function (that is, all comment
lines until a blank line):

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)

line = fgetl(fid);
if isempty(line)

break
elseif ~strncmp(line,'%',1)

continue
end
count = count + 1;

end
fprintf('%d lines in MAGIC help\n',count);
fclose(fid);

Tip If you inadvertently create an infinite loop (a loop that never ends on its
own), stop execution of the loop by pressing Ctrl+C.

2-18

Dates and Times

Dates and Times

In this section...

“Representing Dates and Times in MATLAB” on page 2-19

“Date and Time Functions” on page 2-20

“Working with Date Strings” on page 2-21

“Date String Tables” on page 2-26

“Working with Date Vectors” on page 2-29

“Working with Serial Date Numbers” on page 2-33

“Other Considerations” on page 2-36

“Function Summary” on page 2-38

Representing Dates and Times in MATLAB
The MATLAB software represents date and time information in any of three
formats:

• Date String — A character string for which you select which fields you
want to include, and how you want these fields to appear in the string.

Example: Wednesday, August 23, 2010 10:35:42.946 AM

• Date Vector — A 1-by-6 numeric vector containing the year, month, day,
hour, minute, and second.

Example: [2010 5 25 9 45 44.9]

• Serial Date Number — A single number equal to the number of days since
a fixed, preset date (January 0, 0000).

Example: 7.3428e+005

You have the choice of using any of these formats. If you work with more than
one date and time format, MATLAB provides functions to help you easily
convert from one format to another.

2-19

2 Program Components

Dates and Dates with Time
You can work either with dates alone, or with dates and times combined.
This table shows both options in the default date number, vector, and string
formats.

Date Date and Time

Date Number Days since Jan 1, 0000
n=734455 (n is whole)

Days since Jan 1, 0000
n = 734455.36 (n is real)

Date Vector [year month day 0 0 0]
[2010 11 13 0 0 0]

[year month day hour min sec]
[2010 11 13 8 35 24]

Date String day-month-year
'13-Nov-2010'

day-month-year hour:min:sec
'13-Nov-2010 08:35:24'

These formats also support elapsed time. See “Using Serial Date Numbers
For Elapsed Time” on page 2-35 for more information.

Date and Time Functions
This table shows what information is available in MATLAB with respect to
dates and times and which function provides this information. The sections
that follow the table provide more information on how to use the different
date and time formats.

Date and Time
Information

Output Format Function to
Use

Date number now

Date vector clockCurrent date and time

Date string datestr(now)

Date number datenum(date)

Date vector datevec(date)Current date

Date string date

Day of week for given date Full day name,
abbreviated name, or
day number in week (1-7)

weekday

2-20

Dates and Times

Date and Time
Information

Output Format Function to
Use

Last day of given month(s) Vector of one or more days eomday

Date with modified field Date number addtodate

Calendar for given month 6-by-7 matrix of days calendar

For examples showing how to use these functions, see the function reference
documentation.

Working with Date Strings
There are a number of ways to represent dates and times in character string
format. For example, all of the following are date strings for August 23, 2010
at 04:35:42 PM:

'23-Aug-2010 04:35:06 PM'
'Wednesday, August 23'
'08/23/10 16:35'
'Aug 23 16:35:42.946'

Creating Date Strings In MATLAB
A date string is a character string composed of fields related to a specific date
and/or time. In its default form, a date string has six fields containing values
for a specific day, month, year, hour, minute, and second, in that order:

'23-Aug-2010 16:35:10'

A default date string that contains just a date consists of three fields: day,
month, and year. The date function returns this type of date string:

date
ans =

23-Aug-2010

To create a date string, you simply enter it as a MATLAB character string.
Include any characters you might need to separate the fields, such as the
hyphen, space, and colon used here:

2-21

2 Program Components

d = '23-Aug-2010 16:35:42'

Minimum Requirements for Date Strings. A date string must contain at
least a month and day field, or an hour and minute field. When entering
month and day fields, MATLAB expects the month to precede the day.
(There are ways to reverse this order, but that is more advanced usage and
is documented under “How to Use the Field Specifier” on page 2-23.) The
following date string is August 12, not December 8:

d = '08/12'

When entering the hour and minute fields, put the hour first and separate the
two fields with a colon. The following date strings are 10:35 in the morning
and 3:20 in the afternoon in both 24-hour and 12-hour notation:

t = '10:35' t = '10:35 AM'
t = '15:20' t = '3:20 PM'

If the date includes the year, then the year value must immediately precede
or immediately follow the month and day. The following are both valid date
strings that represent the same day, August 12 in the year 2010:

d = '08/12/2010'
d = '2010/08/12'

When unspecified, the year defaults to the current year, month and day
default to January 1, hour and minute default to 00:00, and second and
millisecond default to 00.000.

Specifying the Fields of a Date String
The MATLAB software provides the datevec, datenum, and datestr functions
for converting from one date format to another. When you pass a date string
to one of these functions, MATLAB does not necessarily know which fields
have been included in the string, or the order in which they are positioned.
Also, if you expect a date string to be returned by one of the conversion
functions, you might need to indicate how that string is to be composed. For
these reasons, unless you are passing a date string that uses the default field
format, MathWorks recommends that you pass an additional argument called
a field specifier in the call.

2-22

Dates and Times

How to Use the Field Specifier. The reference page syntax for date
conversion functions identifies the field specifier arguments as FieldSpecIn
and FieldSpecOut. The datevec and datenum functions use the FieldSpecIn
argument to indicate how MATLAB is to interpret the input date string:

DateVector = datevec(DateString, FieldSpecIn)

The datestr function uses the FieldSpecOut argument to indicate how
MATLAB is to display the output date string:

DateString = datestr(DateVector, FieldSpecOut)

If you need to use a field specifier for both input and output strings, nest a call
to datenum inside a call to datestr or datevec. This example changes date
string 'August 11' to '11 August'. Because neither string is in the default
format, you need a field specifier for both the input and output date strings:

datestr(datenum('August 11', 'mmmm dd'), 'dd mmmm')
ans =

11 August

Note To convert a nonstandard date form into a MATLAB date form, first
convert the nonstandard date form to a date number.

Character-Based Field Identifiers. There are two types of identifiers with
which you can indicate the layout of fields in a date string. The more general
of the two employs character-based symbols, such as those shown in this
table, to designate the fields of a date string. (See “Symbolic Identifiers for
Individual Fields” on page 2-26 for the full table).

Field Example Identifier

Year (in 4 digits) 2010 yyyy

Month (in 3 characters) Aug mmm

Day Number 23 dd

Hour 16 HH

2-23

2 Program Components

Field Example Identifier

Minute 35 MM

Second 42 SS

The goal of the following example is to convert the date vector [2010 08 23 16
35 00] to a date string that has the nondefault format:

2010-08-23 16:35:42

Look up each of the six date fields in the table and use the symbols you find to
compose a field specifier string that tells MATLAB how you want the date
string output to look:

InputVector = [2010 08 23 16 35 42];

datestr(InputVector, 'yyyy-mm-dd HH:MM:SS')
ans =

2010-08-23 16:35:42

Numeric Field Identifiers. There is an additional method for indicating the
type of format you want applied to a date string. The MATLAB software
associates 31 commonly used field sequences with a numeric identifier for
each. Using these predefined formats can simplify the creation of your date
strings. The table below shows several of these identifiers and the type of
date string associated with them. (See “Numeric Identifiers for Predefined
Formats” on page 2-28 for the full table).

Date String Formats Example of Output Identifier to Use

'dd-mmm-yyyy' 01-Mar-2000 1

'HH:MM:SS PM' 3:45:17 PM 14

'mm/dd/yyyy' 03/01/2000 23

'dd/mm/yyyy' 01/03/2000 24

'yyyy-mm-dd HH:MM:SS' 2000-03-01 15:45:17 31

Repeat the example from the previous section, this time using a numeric
field specifier:

2-24

Dates and Times

InputVector = [2010 08 23 16 35 42];

datestr(InputVector, 31)
ans =

2010-08-23 16:35:42

Compare the commands used to achieve the same result. The advantage of
the character-based field specifiers is that they are more versatile and easier
to remember. The advantage of the numeric field specifiers is that frequently
used commands are easier to enter:

datestr(InputVector, 'yyyy-mm-dd HH:MM:SS') % Character
datestr(InputVector, 31) % Numeric

Adding Field Separation Characters. It is customary to separate certain
fields of a date string with some form of punctuation, such as commas or
space characters. Insert these characters into a date string by including
them in the field specifier string. You cannot use any characters that could
conflict with those symbolic characters reserved for use in the FieldSpecIn or
fieldSpecOut strings (for example, y, m, H, M, and so on).

Add separation characters to make a date string easier to read:

datestr(now, 'dddd, mmmm dd, yyyy HH:MM')
ans =

Wednesday, August 23, 2010 16:35

Creating Multiple Date Strings
Calling datestr with more than one date string input returns a character
array of converted date strings. Pass the multiple date strings in a cell array.
All input date strings must use the same format. For example, the following
command passes three dates that all use the mm/dd/yyyy format:

datestr(datenum({'09/16/2007';'05/14/1996';'11/29/2010'}, ...
'mm/dd/yyyy'))

ans =
16-Sep-2007
14-May-1996
29-Nov-2010

2-25

2 Program Components

Time Display in Date Strings
In MATLAB, you can represent time in a date string using either a 12-hour
or 24-hour system in MATLAB. The following table shows how to create a
12-hour time string in the first column, and how to convert that time to its
24-hour equivalent.

12-hour time Command to convert to
24-hour format

Equivalent
24-hour time

05:32 AM datestr('05:32 AM', 'HH:MM') 5:32

05:32 PM datestr('05:32 PM', 'HH:MM') 17:32

The next table shows how to create a 24-hour time string in the first column,
and how to convert that time to its 12-hour equivalent.

24-hour time Command to convert to
12-hour format

Equivalent
12-hour time

05:32 datestr('05:32', 'HH:MM PM') 5:32 AM

17:32 datestr('17:32', 'HH:MM PM') 5:32 PM

Warning The terms AM and PM, when used in the field specifier
string, can be misleading. These terms do not influence which
characters actually become part of the date string; they only
determine whether or not to include them in the date string.
MATLAB selects AM versus PM based on the time entered.

A few other things to remember when specifying time in MATLAB are:

• When you use AM or PM, the HH field is also required .

• When you do not use AM and PM, single-digit hours display a leading zero .

Date String Tables

Symbolic Identifiers for Individual Fields
The following table shows:

2-26

Dates and Times

• The nine fields of a date string (left column)

• Ways to format each field

• Example output for each field

• Assigned character-based field identifiers

Field String Format Example of
Output

Field Identifier

Quarter
year

Letter Q and 1 digit Q4 'QQ'

4 digits 2007 'yyyy'
Year

2 digits 07 'yy'

Full name December ’mmmm’

First 3 letters Dec ’mmm’

2 digits 12 ’mm’
Month

First letter D ’m’

Full name Tuesday 'dddd'

First 3 letters Tue 'ddd'

2 digits 20 'dd'
Day

First letter T 'd'

Hour 2 digits 16 'HH'

Minute 2 digits 02 'MM'

Second 2 digits 54 'SS'

Millisecond Decimal point and 3
digits

.057 'FFF'

12-hour
period

AM or PM PM 'AM' or 'PM'

Notes Concerning Usage. Here are a few points to remember when using
the symbolic identifiers:

2-27

2 Program Components

MATLAB interprets the field specifiers in this table according to your
computer’s language setting and the current MATLAB language setting.

In a field specifier string, you cannot specify any field more than once. For
example, you cannot use 'yy-mmm-dd-m' because it has two month identifiers.
The one exception to this is that you can combine one instance of dd with one
instance of any of the other day identifiers:

ds = datestr(now, 'dddd mmm dd yyyy')
ds =

Wednesday Jun 30 2010

You only can use QQ (quarter of the year) alone or with a year specifier.

Numeric Identifiers for Predefined Formats
The following table shows numeric identifiers you can use to include certain
field and format combinations in a date string.

Date String Formats Example of Output
Identifier to
Use

'dd-mmm-yyyy HH:MM:SS' 01-Mar-2000 15:45:17 0

'dd-mmm-yyyy' 01-Mar-2000 1

'mm/dd/yy' 03/01/00 2

'mmm' Mar 3

'm' M 4

'mm' 03 5

'mm/dd' 03/01 6

'dd' 01 7

'ddd' Wed 8

'd' W 9

'yyyy' 2000 10

'yy' 00 11

'mmmyy' Mar00 12

2-28

Dates and Times

Date String Formats Example of Output
Identifier to
Use

'HH:MM:SS' 15:45:17 13

'HH:MM:SS PM' 3:45:17 PM 14

'HH:MM' 15:45 15

'HH:MM PM' 3:45 PM 16

'QQ-YY' Q1-01 17

'QQ' Q1 18

'dd/mm' 01/03 19

'dd/mm/yy' 01/03/00 20

'mmm.dd,yyyy HH:MM:SS' Mar.01,2000 15:45:17 21

'mmm.dd,yyyy' Mar.01,2000 22

'mm/dd/yyyy' 03/01/2000 23

'dd/mm/yyyy' 01/03/2000 24

'yy/mm/dd' 00/03/01 25

'yyyy/mm/dd' 2000/03/01 26

'QQ-YYYY' Q1-2001 27

'mmmyyyy' Mar2000 28

'yyyy-mm-dd' (ISO 8601) 2000-03-01 29

'yyyymmddTHHMMSS' (ISO
8601)

20000301T154517 30

'yyyy-mm-dd HH:MM:SS' 2000-03-01 15:45:17 31

Working with Date Vectors
Date vectors are an internal format for some MATLAB functions. You do
not typically use date vectors in calculations, although you can use them to
perform some simple computations such as the one shown in the example in
this section.

2-29

2 Program Components

A date vector is a 1-by-6 matrix of double-precision numbers arranged in the
following order.

year month day hour minute second

The following date vector represents 10:45:07 AM on October 24, 2009.

[2009 10 24 10 45 07]

The fields of a date vector must follow these guidelines:

• All six elements, or fields, of the vector are required. If you are interested
only in the date, and not the time, you can set the last three digits of the
vector to zero.

• Time values are expressed in 24-hour notation. There is no AM or PM
setting.

• The values for any of the six fields must be within an approximate range of
300 greater than or 550 less than the current value for that field.

Creating a Date Vector
As with any vector, you can create a date vector just as shown here. Be sure
to put the fields in the correct order:

dv = [2010 8 23 16 35 42];

You can also create a date vector by converting a date string or serial date
number. The datevec function converts from a date string or serial date
number to a date vector.

Converting from Date String to Date Vector
The first argument to datevec can be a date string. If this string is in the
default format for a date string, then you need only the one input argument:

dv = datevec('23-Aug 2010 16:35')
dv =

2010 8 23 16 35 0

2-30

Dates and Times

If the date string is in a nondefault date string format such as the one shown
below, it is recommended that you also pass a field specifier argument. This
argument tells MATLAB how the input string has been formatted:

dv = datevec('August 23, 2010 16:35', 'mmmm dd, yyyy HH:MM')
dv =

2010 8 23 16 35 0

The tables “Symbolic Identifiers for Individual Fields” on page 2-26 and
“Numeric Identifiers for Predefined Formats” on page 2-28 list all of the
format specifiers for date strings. When converting from a date string to a
date vector, you can use any string from these tables.

Converting from Serial Date Number to Date Vector
To convert from a serial date number to a date vector, pass only the date
number argument:

dv = datevec(7.343736909722223e+005)
dv =

2010 8 23 16 35 0

This argument can be the output of a function that yields a serial date number
such as the now function:

dv = datevec(now)
dv =

1.0e+003 *
2.0100 0.0060 0.0290 0.0100 0.0350 0.0460

Creating Multiple Date Vectors
Calling datevec with more than one date string input returns a character
array of converted date strings. Pass the multiple date strings in a cell array.
All input date strings must use the same format. For example, the following
command passes three dates that all use the mm/dd/yyyy format:

datevec({'09/16/2007';'05/14/1996';'11/29/2010'})
ans =

2007 9 16 0 0 0
1996 5 14 0 0 0

2-31

2 Program Components

2010 11 29 0 0 0

Milliseconds in Serial Date Numbers
Date vectors have no separate field in which to specify milliseconds. However,
the seconds field has a fractional part and accurately keeps the milliseconds
field. This example converts a date string with 647 milliseconds into a vector,
and then converts it back into a string. Note that MATLAB fully restores
the milliseconds count:

datenum([2010 8 23 16 35 0])
ans =

7.3437e+005
dvec = datevec('11:21:02.647', 'HH:MM:SS.FFF')
dvec =

1.0e+003 *
2.0100 0.0010 0.0010 0.0110 0.0210 0.0026

datestr(dvec, 'HH:MM:SS.FFF')
ans =

11:21:02.647

Examples of Using Date Vectors
Distribute the three time values in this vector to separate output variables:

[~, ~, ~, hour, min, sec] = datevec(now)
hour =

11
min =

47
sec =

19.4660

Construction of the Eiffel Tower was begun on January 26 in 1887 and
completed on March 31, 1889. This example finds the difference between the
year, month, and day elements of the starting and ending date vectors to
compute the time the tower was under construction:

startDate = [1887 1 26 0 0 0]; % January 26, 1887
finishDate = [1889 3 31 0 0 0]; % March 31, 1889

2-32

Dates and Times

t = finishDate - startDate
t =

2 2 5 0 0 0

[fprintf('\nThe Eiffel Tower took %d years, ', t(1)) ...
fprintf('%d months, and %d days to construct.\n', t(1), t(2))];

The Eiffel Tower took 2 years, 2 months, and 2 days to construct.

Working with Serial Date Numbers
A serial date number represents a calendar date as the number of days that
has passed since a fixed base date.

In MATLAB, serial date number 1 is January 1, 0000. MATLAB also uses
serial time to represent fractions of days beginning at midnight; for example,
6 p.m. equals 0.75 serial days. So the string ’31-Oct-2003, 6:00 PM’ in
MATLAB is date number 731885.75.

MATLAB works internally with serial date numbers. If you are using
functions that handle large numbers of dates or doing extensive calculations
with dates, you get better performance if you use date numbers.

You can create a serial date number from a date string or date vector using
the following commands:

Converting from Date String to Serial Date Number
The first argument to datenum can be a date string. If this string is in the
default format for a date string, then you need only the one input argument:

dv = datenum('23-Aug 2010 16:35')
dn =

7.3437e+005

If the date string is in a nondefault date string format such as the one shown
below, it is recommended that you also pass a field specifier argument. The
field specifier tells MATLAB how the input string has been formatted:

dn = datenum('August 23, 2010 16:35', 'mmmm dd, yyyy HH:MM')

2-33

2 Program Components

dn =
7.3437e+005

The tables “Symbolic Identifiers for Individual Fields” on page 2-26 and
“Numeric Identifiers for Predefined Formats” on page 2-28 list all of the
format specifiers for date strings. When converting from a date string to a
serial date number, you can use any string from these tables.

Certain formats may not contain enough information to compute a date
number. In these cases, hours, minutes, seconds, and milliseconds default to
0, the month defaults to January, the day to 1, and the year to the current
year.

Converting from Date Vector to Serial Date Number
To convert from a date vector to a serial date number, pass just the date
vector argument:

datenum([2010 8 23 16 35 42])
ans =

7.3437e+005

This argument can be the output of a function that yields a date vector such
as the clock function:

dv = clock
dv =

1.0e+003 *
2.0100 0.0060 0.0290 0.0110 0.0130 0.0057

datenum(dv)
ans =

7.3432e+005

Creating Multiple Serial Date Numbers
Calling datenum with more than one date string input returns a character
array of converted date strings. Pass the multiple date strings in a cell array.
All input date strings must use the same format. For example, the following
command passes three dates that all use the mm/dd/yyyy format:

2-34

Dates and Times

datenum({'09/16/2007';'05/14/1996';'11/29/2010'})
ans =

733301
729159
734471

Using Serial Date Numbers For Elapsed Time
To find the time elapsed between two events, subtract the starting time from
the ending time using serial date number format.

Warning Do not use date vectors to represent elapsed time. Also,
be careful not to confuse the time of day format (7:30) with that of
elapsed time (7 hours, 30 seconds).

This example computes the time elapsed between 8:15 AM and 3:45 PM on
different days. Create two strings containing the starting and ending time:

s1 = '20-Apr 8:15'; s2 = '23-Apr 15:45';

Convert date strings to serial date numbers:

n1 = datenum(s1, 'dd-mmm HH:MM');
n2 = datenum(s2, 'dd-mmm HH:MM');

Subtract the starting time from the ending time:

n = n2 - n1
n =

3.3125

Convert the answer to a string:

days = floor(n);
hrs = datestr(n, 'HH');
mins = datestr(n, 'MM');

fprintf('\n %d days, %s hours, %s minutes\n', ...
days, hrs, mins);

3 days, 07 hours, 30 minutes

2-35

2 Program Components

Examples of Using Serial Date Numbers
Add 50 days to the serial date number returned by the now function:

fprintf('\n In 50 days it will be %s.\n', ...
datestr(now+50, 'dddd, mmmm dd'))

In 50 days it will be Saturday, July 10.

Using the addtodate function, add 20 days to the date 20-Jan-2002. This date
is first converted to a date number by a nested call to datenum:

addtodate(datenum('20.01.2002','dd.mm.yyyy'),20,'day')
R =

731256

Other Considerations

• “Carrying to the Next Field” on page 2-36

• “Specifying a Pivot Year” on page 2-37

• “Date Vectors vs. Vectors of Date Numbers” on page 2-37

Carrying to the Next Field
Where reasonable, MATLAB automatically carries values outside the normal
range of each unit to the next field. For example, specifying a date vector with
a month value of 14 affects the output by setting the month to February and
incrementing the year value by 1. The carrying forward of values applies
only to date vectors and to time and day values in date strings, carries the
10 extra months from the input date string 22/03/2009 into October of the
following year:

datestr([2009 22 03 00 00 00])
ans =

03-Oct-2010

All units can wrap and have negative values. Note that specifying a negative
day value, D, sets the output to the last day of the previous month minus

2-36

Dates and Times

|D|. This example takes the input month (07, or July), finds the last day of
the previous month (June 30), and subtracts the number of days in the field
specifier (5 days) from that date to yield a return date of June 25, 2010:

datestr([2010 07 -05 00 00 00])
ans =

25-Jun-2010

Specifying a Pivot Year
Use the pivot year to interpret date strings that specify the year using two
characters. The pivot year is the starting year of the 100-year range in which
a two-character date string year resides. The default pivot year is the current
year minus 50 years.

The syntax for entering a pivot year is:

newString = datestr(oldString, fieldSpec, pivotYear);

This example changes the pivot year. Note the effect on the output:

datestr('4/16/55', 1, 1900)
ans =

16-Apr-1955

datestr('4/16/55', 1, 2000)
ans =

16-Apr-2055

Date Vectors vs. Vectors of Date Numbers
A six-element vector could represent either a single date vector, or a vector of
six individual serial date numbers. For example, the vector [2010 12 15 11 45
03] could represent either 11:45:03 on December 15, 2010 or a vector of serial
date numbers 2010, 12, 15, and so on.

If you are working with a date vector that the date conversion functions
interpret by default as a vector of serial date numbers, you might need to
explicitly convert your vector to a date number first, and then convert the
value returned by datenum to the desired format.

2-37

2 Program Components

In this example, the year 3000 is beyond the range of years for which
MATLAB defaults to date vector format. Because of this, the intended format
of the input vector is unclear to the datestr function, and the input is
considered to be a vector of date numbers:

datestr([3000 11 05 10 32 56])
ans =

18-Mar-0008
11-Jan-0000
05-Jan-0000
10-Jan-0000
01-Feb-0000
25-Feb-0000

If it is your intention that the input is a date vector instead, convert it to a
date number first, and then to a date string:

dn = datenum([3000 11 05 10 32 56]);
ds = datestr(dn)
ds =

05-Nov-3000 10:32:56

Function Summary
MATLAB provides the following functions for time and date handling.

Current Date and Time Functions

Function Description

clock Return the current date and time as a date vector

date Return the current date as date string

now Return the current date and time as serial date number

2-38

Dates and Times

Conversion Functions

Function Description

datenum Convert to a serial date number

datestr Convert to a string representation of the date

datevec Convert to a date vector

Utility Functions

Function Description

addtodate Modify a date number by field

calendar Return a matrix representing a calendar

datetick Label axis tick lines with dates

eomday Return the last day of a year and month

weekday Return the current day of the week

Timing Measurement Functions

Function Description

cputime Return the total CPU time used by MATLAB since it
was started

etime Return the time elapsed between two date vectors

tic, toc Measure the time elapsed between invoking tic and toc

2-39

2 Program Components

Regular Expressions

In this section...

“Overview” on page 2-40

“Calling Regular Expression Functions from MATLAB” on page 2-42

“Parsing Strings with Regular Expressions” on page 2-46

“Other Benefits of Using Regular Expressions” on page 2-50

“Metacharacters and Operators” on page 2-51

“Character Type Operators” on page 2-53

“Character Representation” on page 2-57

“Grouping Operators” on page 2-58

“Nonmatching Operators” on page 2-60

“Positional Operators” on page 2-61

“Lookaround Operators” on page 2-62

“Quantifiers” on page 2-68

“Tokens” on page 2-71

“Named Capture” on page 2-76

“Conditional Expressions” on page 2-78

“Dynamic Regular Expressions” on page 2-80

“String Replacement” on page 2-89

“Handling Multiple Strings” on page 2-91

“Function, Mode Options, Operator, Return Value Summaries” on page 2-91

Overview
A regular expression is a string of characters that defines a certain pattern.
You normally use a regular expression to search text for a group of words
that matches the pattern. for example, while parsing program input or while
processing a block of text.

2-40

Regular Expressions

The string 'Joh?n\w*' is an example of a regular expression. It defines a
pattern that starts with the letters Jo, is optionally followed by the letter
h (indicated by 'h?'), is then followed by the letter n, and ends with any
number of word characters 2 (indicated by '\w*'). This pattern matches any
of the following:

Jon, John, Jonathan, Johnny

Regular expressions provide a unique way to search a volume of text for a
particular subset of characters within that text. Instead of looking for an
exact character match as you would do with a function like strfind, regular
expressions give you the ability to look for a particular pattern of characters.

For example, several ways of expressing a metric rate of speed are:

km/h
km/hr
km/hour
kilometers/hour
kilometers per hour

You could locate any of the above terms in your text by issuing five separate
search commands:

strfind(text, 'km/h');
strfind(text, 'km/hour');

- etc. -

2. The term “word characters” in this text refers to characters that are alphabetic, numeric,
or underscore.

2-41

2 Program Components

To be more efficient, however, you can build a single phrase that applies to
all of these search strings:

Translate this phrase it into a regular expression (to be explained later in
this section) and you have:

pattern = 'k(ilo)?m(eters)?(/|\sper\s)h(r|our)?';

Now locate one or more of the strings using just a single command:

text = ['The high-speed train traveled at 250 ', ...
'kilometers per hour alongside the automobile ', ...
'travelling at 120 km/h.'];

regexp(text, pattern, 'match')
ans =

'kilometers per hour' 'km/h'

Calling Regular Expression Functions from MATLAB
This section covers the following topics:

• “MATLAB Regular Expression Functions” on page 2-43

• “Returning the Desired Information” on page 2-43

• “Modifying Parameters of the Search (Modes)” on page 2-44

2-42

Regular Expressions

Note The examples in this and some of the later sections of this
documentation use expressions that can be difficult to decipher for anyone
not previously exposed to them. The purpose of these initial examples is to
introduce the basic use of regular expressions in MATLAB. Learning how
to translate the expressions begins in the “Metacharacters and Operators”
on page 2-51 section.

MATLAB Regular Expression Functions
There are four MATLAB functions that support searching and replacing
characters using regular expressions. The first three are similar in the input
values they accept and the output values they return. For details, click the
links in the table to see the corresponding function reference pages in the
MATLAB Help.

Function Description

regexp Match regular expression.

regexpi Match regular expression, ignoring case.

regexprep Replace string using regular expression.

regexptranslate Translate string into regular expression.

When calling any of the first three functions, pass the string to be parsed
and the regular expression in the first two input arguments. When calling
regexprep, pass an additional input that is an expression that specifies a
pattern for the replacement string.

Returning the Desired Information
The regexp and regexpi functions return from 1 to 7 output values. providing
the following information:

• The content or array indices of all matching strings

• The content of all nonmatching strings

• The content, names, or array indices of all tokens that were found

2-43

2 Program Components

Unless you specify otherwise, MATLAB returns as many output values as
you have output variables for. These are returned in the order shown by the
“Return Value Summary” on page 2-99 table.

The following call to regexp returns all 7 outputs:

[matchStart, matchEnd, tokenIndices, matchStrings, ...
tokenStrings, tokenName, splitStrings] = regexp(str, expr);

To specify fewer values to return, include an identifying keyword in the input
argument list when you call regexp or regexpi. For example, the following
statement uses two of these keywords, match and start:

[matchStrings, matchStart] = regexp(str, expr, 'match', 'start')

When you execute this statement, MATLAB assigns a cell array of all strings
that match the pattern to variable matchStrings, and assigns an array of
doubles containing the starting index of each match to variable matchStart.

For information on these output values and selecting which outputs to return,
see the regexp function reference page.

Modifying Parameters of the Search (Modes)
You can fine-tune your regular expression parsing using the optional mode
inputs: Case Sensitivity, Empty Match, Dot Matching, Anchor Type, and
Spacing. These modes tell MATLAB whether or not to:

• Consider letter case when matching an expression to a string (Case
Sensitivity mode).

• Allow successful matches of length zero (Empty Match mode).

• Include the newline (\n) character when matching the dot (.)
metacharacter in a regular expression (Dot Matching mode).

• Consider the ^ and $ metacharacters to represent the beginning and end of
a string or the beginning and end of a line (Anchor Type mode).

• Ignore space characters and comments in the expression or to interpret
them literally (Spacing mode).

2-44

Regular Expressions

See the reference page for the regexp function for more information on
regular expression modes.

Applying Modes. You can apply any of these modes in either of two ways.
(This is with the exception of Empty Match mode that applies only to all of
the regular expression):

• Apply the mode to all of a regular expression by passing the mode specifier
in the argument list of the call. See Example 1, below.

• Apply the mode to specific parts of your expression by specifying the mode
symbolically within the regular expression itself. See Example 2, below.

Example 1 — Applying Case Sensitivity Mode to the Entire String.

Create two slightly different strings, s1 and s2. Then write an expression
expr that you can use to match both of these strings, but only when ignoring
case. (The expression operators .+ match any consecutive series of any
character between the MAT or mat phrases.)

s1 = 'Save your MATLAB data to a .mat file in C:\work\matlab';
s2 = 'Save your MATLAB data to a .MAT file in C:\work\matlab';
expr = '.+MAT.+mat.+mat.+';

Run regexp on both strings at the same time in ignorecase mode and
examine the output in cell array c:

c = regexp({s1, s2}, expr, 'match', 'ignorecase');
c{:}
ans =

'Save your MATLAB data to a .mat file in C:\work\matlab'
ans =

'Save your MATLAB data to a .MAT file in C:\work\matlab'

Because of the ignorecase mode, there is a match for both strings. When you
use matchcase mode instead, only the exact case match is accepted:

c = regexp({s1, s2}, expr, 'match', 'matchcase');
c{:}
ans =

'Save your MATLAB data to a .mat file in C:\work\matlab'

2-45

2 Program Components

ans =
{}

Example 2 — Applying Case Sensitivity Mode Selectively. This
example uses symbolic mode designators within the expression itself. The
(?i) symbol tells regexp to ignore case for that part of the expression that
immediately follows it. Similarly, the (?-i) symbol requires case to match for
the part of the expression following it.

Here are three strings that vary slightly in case. Following that is the
expression expr that employs the two states of the Case Sensitivity mode.
Note that each of the (?-i) or (?i) symbols used in this expression applies
only to the letters MAT or mat that immediately follow it:

s1 = 'Save your MATLAB data to a .mat file in C:\work\matlab';
s2 = 'Save your MATLAB data to a .MAT file in C:\work\MATLAB';
s3 = 'Save your MATLAB data to a .MAT file in C:\work\matlab';
expr = '.*(?-i)MAT.*(?i)mat.*(?-i)mat';

Run regexp on the three strings. According to the expression expr, the first
and third instances of the letters ’mat’ must be in upper and lower case,
respectively. Case is ignored for the second instance. Only strings s1 and s3
satisfy this condition:

c = regexp({s1,s2,s3}, expr, 'match');
c{:}
ans =

'Save your MATLAB data to a .mat file in C:\work\mat'
ans =

{}
ans =

'Save your MATLAB data to a .MAT file in C:\work\mat'

Parsing Strings with Regular Expressions
MATLAB parses a string from left to right, “consuming” the string as it goes.
If matching characters are found, regexp records the location and resumes
parsing the string, starting just after the end of the most recent match.
There is no overlapping of characters in this process. See Examples 2a and
2b under “Using the Lookahead Operator” if you need to match overlapping
character groups.

2-46

Regular Expressions

There are three steps involved in using regular expressions to search text
for a particular string:

1 Identify unique patterns in the string

This entails breaking up the string you want to search for into groups of like
character types. These character types could be a series of lowercase letters,
a dollar sign followed by three numbers and then a decimal point, etc.

2 Express each pattern as a regular expression

Use the metacharacters and operators described in this documentation to
express each segment of your search string as a regular expression. Then
combine these expression segments into the single expression to use in
the search.

3 Call the appropriate search function

Pass the string you want to parse to one of the search functions, such as
regexp or regexpi, or to the string replacement function, regexprep.

The example shown in this section searches a record containing contact
information belonging to a group of five friends. This information includes
each person’s name, telephone number, place of residence, and email address.
The goal is to extract specific information from one or more of the strings.

contacts = { ...
'Harry 287-625-7315 Columbus, OH hparker@hmail.com'; ...
'Janice 529-882-1759 Fresno, CA jan_stephens@horizon.net'; ...
'Mike 793-136-0975 Richmond, VA sue_and_mike@hmail.net'; ...
'Nadine 648-427-9947 Tampa, FL nadine_berry@horizon.net'; ...
'Jason 697-336-7728 Montrose, CO jason_blake@mymail.com'};

The first part of the example builds a regular expression that represents the
format of a standard email address. Using that expression, the example then
searches the information for the email address of one of the group of friends.
Contact information for Janice is in row 2 of the contacts cell array:

contacts{2}
ans =

Janice 793-882-1759 Fresno, CA jan_stephens@horizon.net

2-47

2 Program Components

Step 1 — Identify Unique Patterns in the String
A typical email address is made up of standard components: the user’s
account name, followed by an @ sign, the name of the user’s internet service
provider (ISP), a dot (period), and the domain to which the ISP belongs. The
table below lists these components in the left column, and generalizes the
format of each component in the right column.

Unique patterns of an email address General description of each pattern

Start with the account name
jan_stephens . . .

One or more lowercase letters and underscores

Add ’@’
jan_stephens@ . . .

@ sign

Add the ISP
jan_stephens@horizon . . .

One or more lowercase letters, no underscores

Add a dot (period)
jan_stephens@horizon. . . .

Dot (period) character

Finish with the domain
jan_stephens@horizon.net

com or net

Step 2 — Express Each Pattern as a Regular Expression
In this step, you translate the general formats derived in Step 1 into segments
of a regular expression. You then add these segments together to form the
entire expression.

The table below shows the generalized format descriptions of each character
pattern in the left-most column. (This was carried forward from the right
column of the table in Step 1.) The second column links to tables in this
documentation that show the appropriate expressions to use in translating
this description into a regular expression. The third column shows the
operators or metacharacters chosen from those tables to represent the
character pattern.

2-48

Regular Expressions

Description of each
segment

Tables referenced Related
metacharacters

One or more lowercase
letters and underscores

See Character Types on page 2-93,
Quantifiers on page 2-96.

[a-z_]+

@ sign See Character Representation on page 2-94. @

One or more lowercase
letters, no underscores

See Character Types on page 2-93,
Quantifiers on page 2-96.

[a-z]+

Dot (period) character See Character Representation on page 2-94. \.

com or net See Grouping Operators on page 2-94. (com|net)

Assembling these metacharacters into one string gives you the complete
expression:

email = '[a-z_]+@[a-z]+\.(com|net)';

Step 3 — Call the Appropriate Search Function
In this step, you use the regular expression derived in Step 2 to match an
email address for one of the friends in the group. Use the regexp function
to perform the search.

Here is the list of contact information shown earlier in this section. Each
person’s record occupies a row of the contacts cell array:

contacts = { ...
'Harry 287-625-7315 Columbus, OH hparker@hmail.com'; ...
'Janice 529-882-1759 Fresno, CA jan_stephens@horizon.net'; ...
'Mike 793-136-0975 Richmond, VA sue_and_mike@hmail.net'; ...
'Nadine 648-427-9947 Tampa, FL nadine_berry@horizon.net'; ...
'Jason 697-336-7728 Montrose, CO jason_blake@mymail.com'};

This is the regular expression that represents an email address, as derived
in Step 2:

email = '[a-z_]+@[a-z]+\.(com|net)';

Call the regexp function, passing row 2 of the contacts cell array and the
email regular expression. This returns the email address for Janice.

2-49

2 Program Components

regexp(contacts{2}, email, 'match')
ans =

'jan_stephens@horizon.net'

Note The last input passed to regexp in this command is the keyword
'match' This keyword causes regexp to return the output as a string instead
of as indices into the cell array.

Make the same call, but this time for the fifth person in the list:

regexp(contacts{5}, email, 'match')
ans =

'jason_blake@mymail.com'

You can also search for the email address of everyone in the list by using the
entire cell array for the input string argument:

regexp(contacts, email, 'match');

Other Benefits of Using Regular Expressions
In addition to parsing single strings, you can also use the MATLAB regular
expression functions for any of the following tasks:

• “Parsing or Replacing with Multiple Expressions and Strings” on page 2-50

• “Replacing Parts of a String” on page 2-51

• “Matching with Tokens Taken from the String” on page 2-51

• “Matching and Replacing Strings Dynamically” on page 2-51

Parsing or Replacing with Multiple Expressions and Strings
The MATLAB regular expression functions also work on multiple strings
contained in a cell array. You can use multiple strings as the strings to
be parsed, as regular expressions to match against the parse string(s), as
replacement strings, or most combinations of these.

2-50

Regular Expressions

Replacing Parts of a String
String replacement with regular expressions requires the regexprep function.
This function accepts two regular expressions in its input argument list. Each
expression specifies a character pattern to match in the string to be parsed.
The function then replaces occurrences of the first pattern with occurrences of
the second.

Matching with Tokens Taken from the String
A token is one or more characters selected from within the string being
parsed that you can use to match other characters in the same string. The
characters representing a token are not constants; they depend upon the
contents of the parse string that match a part of the expression. You define a
token by enclosing part of a regular expression in parentheses. You search for
that token using the metacharacters \1, \2, etc. You can also use tokens in
specifying a replacement string for the regexprep function. In this case, you
refer to specific tokens using the metacharacters $1, $2, etc.

Matching and Replacing Strings Dynamically
With dynamic expressions, you can:

• Execute a MATLAB command within your expression parsing command.

• Execute a MATLAB command, and include the returned string in the
match expression.

• Parse a regular expression and include the resulting string in the match
expression.

Metacharacters and Operators
Much of the remainder of this section on regular expressions documents
the various metacharacters and operators that you need to compose your
expressions.

2-51

2 Program Components

Category Metacharacters and Operators

“Character Type Operators” on
page 2-53

One of a certain group of characters (e.g., a character
in a predefined set or range, a whitespace character, an
alphabetic, numeric, or underscore character, or a character
that is not in one of these groups.

“Character Representation” on
page 2-57

Metacharacters that represent a special character (e.g.,
backslash, new line, tab, hexadecimal values, any
untranslated literal character, etc.

“Grouping Operators” on page
2-58

A grouping of letters or metacharacters to apply a regular
expression operator to.

“Nonmatching Operators” on
page 2-60

Text included in an expression for the purpose of adding a
comment statement, but not to be used as a pattern to find
a match for.

“Positional Operators” on page
2-61

Location in the string where the characters or pattern must
be positioned for there to be a match (e.g., start or end of the
string, start or end of a word, an entire word).

“Lookaround Operators” on page
2-62

Characters or patterns that immediately precede or follow
the intended match, but are not considered to be part of the
match itself.

“Quantifiers” on page 2-68 Various ways of expressing the number of times a character
or pattern is to occur for there to be a match (e.g., exact
number, minimum, maximum, zero or one, zero or more, one
or more, etc.)

“Tokens” on page 2-71 Characters or patterns selected from the string being parsed
that you can use to match other characters in the string.

“Named Capture” on page 2-76 Operators used in assigning names to matched tokens, thus
making your code more maintainable and the output easier
to interpret.

“Conditional Expressions” on
page 2-78

Operators that express conditions under which a certain
match is considered to be is acceptable.

2-52

Regular Expressions

Category Metacharacters and Operators

“Dynamic Regular Expressions”
on page 2-80

Operators that include a subexpression or command that
MATLAB parses or executes. MATLAB uses the result of
that operation in parsing the overall expression.

“String Replacement” on page
2-89

Operators used with the regexprep function to specify the
content of the replacement text.

Character Type Operators
Tables and examples in this and subsequent sections show the operators
and syntax supported by the MATLAB regexp, regexpi, and regexprep
functions. Expressions shown in the left column have special meaning and
match one or more characters according to the usage described in the right
column. Any character not having a special meaning, for example, any
alphabetic character, matches that same character literally. To force one of
the regular expression functions to interpret a sequence of characters literally
(rather than as an operator) use the regexptranslate function.

Character types represent either a specific set of characters (e.g., uppercase)
or a certain type of character (e.g., nonwhitespace).

Operator Usage

. Any single character, including white space

[c1c2c3] Any character contained within the brackets: c1 or c2
or c3

[^c1c2c3] Any character not contained within the brackets:
anything but c1 or c2 or c3

[c1-c2] Any character in the range of c1 through c2

\s Any white-space character; equivalent to [
\f\n\r\t\v]

\S Any nonwhitespace character; equivalent to [^
\f\n\r\t\v]

2-53

2 Program Components

Operator Usage

\w Any alphabetic, numeric, or underscore character.
For English character sets, this is equivalent to
[a-zA-Z_0-9].

\W Any character that is not alphabetic, numeric, or
underscore. For English character sets, this is
equivalent to [^a-zA-Z_0-9].

\d Any numeric digit; equivalent to [0-9]

\D Any nondigit character; equivalent to [^0-9]

The following examples demonstrate how to use the character classes listed
above. See the regexp reference page for help with syntax. Most of these
examples use the following string:

str = 'The rain in Spain falls mainly on the plain.';

Any Character — .
The . operator matches any single character, including whitespace.

Example 1 — Matching Any Character. Use the dot (.) operator to locate
sequences of five consecutive characters that end with 'ain'. The regular
expression used in this example is

expr = '..ain';

Find each occurrence of the expression expr within the input string str.
Return a vector of the indices at which any matches begin:

str = 'The rain in Spain falls mainly on the plain.';

startIndex = regexp(str, expr)
startIndex =

4 13 24 39

Here is the input string with the returned startIndex values shown below
it. Note that the dot operator not only matches the letters in the string, but
whitespace characters as well:

2-54

Regular Expressions

The rain in Spain falls mainly on the plain.
| | | |
4 13 24 39

If you would prefer to have MATLAB return the text of the matching
substrings, use the 'match' qualifier in the command:

matchStr = regexp(str, expr, 'match')
matchStr =

' rain' 'Spain' ' main' 'plain'

Example 2 — Returning Strings Rather than Indices. Here is the same
example, this time specifying the command qualifier 'match'. In this case,
regexp returns the text of the matching strings rather than the starting index:

regexp(str, '..ain', 'match')
ans =

' rain' 'Spain' ' main' 'plain'

Selected Characters — [c1c2c3]
Use [c1c2c3] in an expression to match selected characters r, p, or m followed
by 'ain'. Specify two qualifiers this time, 'match' and 'start', along with
an output argument for each, mat and idx. This returns the matching strings
and the starting indices of those strings:

[mat idx] = regexp(str, '[rpm]ain', 'match', 'start')
mat =

'rain' 'pain' 'main'
idx =

5 14 25

2-55

2 Program Components

Range of Characters — [c1 - c2]
Use [c1-c2] in an expression to find words that begin with a letter in the
range of A through Z:

[mat idx] = regexp(str, '[A-Z]\w*', 'match', 'start')
mat =

'The' 'Spain'
idx =

1 13

Word and White-Space Characters — \w, \s
Use \w and \s in an expression to find words that end with the letter n
followed by a white-space character. Add a new qualifier, 'end', to return
the str index that marks the end of each match:

[mat ix1 ix2] = regexp(str, '\w*n\s', 'match', 'start', 'end')
mat =

'rain ' 'in ' 'Spain ' 'on '
ix1 =

5 10 13 32
ix2 =

9 12 18 34

Numeric Digits — \d
Use \d to find numeric digits in the following string:

numstr = 'Easy as 1, 2, 3';

[mat idx] = regexp(numstr, '\d', 'match', 'start')
mat =

'1' '2' '3'
idx =

9 12 15

2-56

Regular Expressions

Character Representation
The following character combinations represent specific character and
numeric values.

Operator Usage

\a Alarm (beep)

\\ Backslash

\$ Dollar sign

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\oN or \o{N} Character of octal value N

\xN or \x{N} Character of hexadecimal value N

\char If a character has special meaning in a regular expression,
precede it with backslash (\) to match it literally.

Octal and Hexadecimal — \o, \x
Use \x and \o in an expression to find a comma (hex 2C) followed by a space
(octal 40) followed by the character 2:

numstr = 'Easy as 1, 2, 3';

[mat idx] = regexp(numstr, '\x2C\o{40}2', 'match', 'start')
mat =

', 2'
idx =

10

2-57

2 Program Components

Grouping Operators
When you need to use one of the regular expression operators on a number of
consecutive elements in an expression, group these elements together with
one of the grouping operators and apply the operation to the entire group. For
example, this command matches a capital letter followed by a numeral and
then an optional space character. These elements have to occur at least two
times in succession for there to be a match. To apply the {2,} multiplier to
all three consecutive characters, you can first make a group of the characters
and then apply the (?:) quantifier to this group:

regexp('B5 A2 6F 63 R6 P4 B2 BC', '(?:[A-Z]\d\s?){2,}', 'match')
ans =

'B5 A2 ' 'R6 P4 B2 '

There are three types of explicit grouping operators that you can use when you
need to apply an operation to more than just one element in an expression.
Also in the grouping category is the alternative match (logical OR) operator,
|. This creates two or more groups of elements in the expression and applies
an operation to one of the groups.

Operator Usage

(expr) Group regular expressions and capture tokens.

(?:expr) Group regular expressions, but do not capture tokens.

(?>expr) Group atomically.

expr1|expr2 Match expression expr1 or expression expr2.

Grouping and Capture — (expr)
When you enclose an expression in parentheses, MATLAB not only treats all
of the enclosed elements as a group, but also captures a token from these
elements whenever a match with the input string is found. For an example of
how to use this, see “Using Tokens — Example 1” on page 2-73.

Grouping Only — (?:expr)
Use (?:expr) to group a non-vowel (consonant, numeric, whitespace,
punctuation, etc.) followed by a vowel in the palindrome pstr. Specify at least

2-58

Regular Expressions

two consecutive occurrences ({2,}) of this group. Return the starting and
ending indices of the matched substrings:

pstr = 'Marge lets Norah see Sharon''s telegram';
expr = '(?:[^aeiou][aeiou]){2,}';

[mat ix1 ix2] = regexp(pstr, expr, 'match', 'start', 'end')
mat =

'Nora' 'haro' 'tele'
ix1 =

12 23 31
ix2 =

15 26 34

Remove the grouping, and the {2,} now applies only to [aeiou]. The
command is entirely different now as it looks for a non-vowel followed by at
least two consecutive vowels:

expr = '[^aeiou][aeiou]{2,}';

[mat ix1 ix2] = regexp(pstr, expr, 'match', 'start', 'end')
mat =

'see'
ix1 =

18
ix2 =

20

Alternative Match — expr1|expr2
Use p1|p2 to pick out words in the string that start with let or tel:

regexpi(pstr, '(let|tel)\w+', 'match')
ans =

'lets' 'telegram'

2-59

2 Program Components

Note The expressions A | B and B | A may return different answers. If there
is a match with the first part of the expression (before the | symbol), then the
second part (that follows the | symbol) is not considered.

See the following example. Both calls to regexp parse the same string, and,
except for the order of the OR conditions, the same expression. But the first
call returns two values and the second returns just one:

string = 'one two'; expr1 = '(\w+\s\w+)'; expr2 = '(\w+)';

regexp(string, [expr1 '|' expr2], 'match')
ans =

'one two'

regexp(string, [expr2 '|' expr1], 'match')
ans =

'one' 'two'

Nonmatching Operators
The comment operator enables you to insert comments into your code to make
it more maintainable. The text of the comment is ignored by MATLAB when
matching against the input string.

Operator Usage

(?#comment) Insert a comment into the expression. Comments are
ignored in matching.

Including Comments — (?#expr)
Use (?#expr) to add a comment to this expression that matches capitalized
words in pstr. Comments are ignored in the process of finding a match:

regexp(pstr, '(?# Match words in caps)[A-Z]\w+', 'match')
ans =

'Marge' 'Norah' 'Sharon'

2-60

Regular Expressions

Positional Operators
Positional operators in an expression match parts of the input string not by
content, but by where they occur in the string (e.g., the first N characters in
the string).

Operator Usage

^expr Match expr if it occurs at the beginning of the input
string.

expr$ Match expr if it occurs at the end of the input string.

\<expr Match expr when it occurs at the beginning of a
word.

expr\> Match expr when it occurs at the end of a word.

\<expr\> Match expr when it represents the entire word.

Start and End of String Match — ^expr, expr$
Use ^expr to match words starting with the letter m or M only when it begins
the string, and expr$ to match words ending with m or M only when it ends
the string:

regexpi(pstr, '^m\w*|\w*m$', 'match')
ans =

'Marge' 'telegram'

Start and End of Word Match — \<expr, expr\>
Use \<expr to match any words starting with n or N, or ending with e or E:

regexpi(pstr, '\<n\w*|\w*e\>', 'match')
ans =

'Marge' 'Norah' 'see'

Exact Word Match — \<expr\>
Use \<expr\> to match a word starting with an n or N and ending with an h
or H:

2-61

2 Program Components

regexpi(pstr, '\<n\w*h\>', 'match')
ans =

'Norah'

Lookaround Operators
Lookaround operators tell MATLAB to look either ahead or behind the
current location in the string for a specified expression. If the expression is
found, MATLAB attempts to match a given pattern.

This table shows the four lookaround expressions: lookahead, negative
lookahead, lookbehind, and negative lookbehind.

Operator Usage

(?=expr) Look ahead from current position and test if expr
is found.

(?!expr) Look ahead from current position and test if expr
is not found

(?<=expr) Look behind from current position and test if expr
is found.

(?<!expr) Look behind from current position and test if expr
is not found.

Lookaround operators do not change the current parsing location in the input
string. They are more of a condition that must be satisfied for a match to occur.

For example, the following command uses an expression that matches
alphabetic, numeric, or underscore characters (\w*) that meet the condition
that they look ahead to (i.e., are immediately followed by) the letters vision.
The resulting match includes only that part of the string that matches the
\w* operator; it does not include those characters that match the lookahead
expression (?=vision):

[s e] = regexp('telegraph television telephone', ...
'\w*(?=vision)', 'start', 'end')

s =
11

e =

2-62

Regular Expressions

14

If you repeat this command and match one character beyond the lookahead
expression, you can see that parsing of the input string resumes at the
letter v, thus demonstrating that matching the lookahead operator has not
consumed any characters in the string:

regexp('telegraph television telephone', ...
'\w*(?=vision).', 'match')

ans =
'telev'

Note You can also use lookaround operators to perform a logical AND of two
elements. See “Using Lookaround as a Logical Operator” on page 2-67.

Using the Lookahead Operator — expr(?=test)

Example 1 — Lookahead. Look ahead to a file name (fileread.m), and
return only the name of the folder in which it resides, not the file name itself.
Note that the lookahead part of the expression serves only as a condition for
the match; it is not part of the match itself:

str = which('fileread')
str =

C:\Program Files\MATLAB\toolbox\matlab\iofun\fileread.m

% Look ahead to a backslash (\\), followed by a file name (\w+)
% with an .m or .p extension (\.[mp]). Capture the letters
% that precede this sequence.
regexp(str, '\w+(?=\\\w+\.[mp])', 'match')
ans =

'iofun'

Example 2a — Matching Sequential Character Groups. MATLAB
parses a string from left to right, “consuming” the string as it goes. If
matching characters are found, regexp records the location and resumes
parsing the string from the location of the most recent match. There is no
overlapping of characters in this process.

2-63

2 Program Components

Find all sequences of 6 nonwhitespace characters in the input string shown
below. Following the MATLAB default behavior, do not allow for overlap.
That is, begin looking for your next match starting just after the end of the
current match:

string = 'Locate several 6-char. phrases';
regexpi(string, '\S{6}')
ans =

1 8 16 24

This statement finds the phrases:

Locate severa 6-char phrase

Example 2b — Using Lookahead to Match Overlapping Character
Groups. If you need to find every sequence of characters that match a pattern,
including sequences that overlap another, capture only the first character and
look ahead for the remainder of the pattern. In other words, begin looking for
your next match starting after the next character of the current match:

string = 'Locate several 6-char. phrases';
regexpi(string, '\S(?=\S{5})')
ans =

1 8 9 16 17 24 25

This statement finds the phrases:

Locate severa everal 6-char -char. phrase hrases

Using the Negative Lookahead Operator — expr(?!test)

Example — Negative Lookbehind and Lookahead. Generate a series of
sequential numbers:

n = num2str(5:15)
n =

5 6 7 8 9 10 11 12 13 14 15

Use both the negative lookbehind and negative lookahead operators together
to precede only the single-digit numbers with zero:

2-64

Regular Expressions

regexprep(n, '(?<!\d)(\d)(?!\d)', '0$1')
ans =

05 06 07 08 09 10 11 12 13 14 15

Using the Lookbehind Operator — (?<=test)expr

Example 1 — Positive and Negative Lookbehind Operators. Using the
lookbehind operator, find the letter r that is preceded by the letter u:

str = 'Neural Network Toolbox';

startIndex = regexp(str, '(?<=u)r', 'start')
startIndex =

4

Using the negative lookbehind operator, find the letter r that is not preceded
by the letter u:

startIndex = regexp(str, '(?<!u)r', 'start')
startIndex =

13

Example 2 — Lookbehind. Return the names and 7-digit telephone
numbers for those people in the list that are in the 617 area code. The
lookbehind (?<=^617-) finds those lines that begin with the number 617:

phone_list = {...
'978-389-2457 Kevin'; '617-922-3091 Ruth'; ...
'781-147-1748 Alan'; '508-643-9648 George'; ...
'617-774-6642 Lisa'; '617-241-0275 Greg'; ...
'413-995-9114 Jason'; '781-276-0482 Victoria'};
len = length(phone_list);

ph617 = regexp(phone_list, '(?<=^617-).*', 'match');

for k=1:len
str = char(ph617{k});
if ~isempty(str), fprintf(' %s\n', str), end
end

2-65

2 Program Components

MATLAB returns the three numbers that have a 617 area code:

922-3091 Ruth
774-6642 Lisa
241-0275 Greg

Using the Negative Lookbehind Operator— (?<!test)expr

Example — Negative Lookbehind. This example uses negative lookbehind
to find those tasks that are not labelled as Done or Pending, Create a list of
tasks, each with status information to the left:

tasks = {...
'ToDo 3892457'; 'Done 9223091'; ...
'Pending 1471748'; 'Maybe 7746642'; ...
'ToDo 2410275'; 'Pending 4723596'; ...
'ToDo 9959114'; 'Maybe 2760482'; ...
'ToDo 3080027'; 'Done 1221941'};
count = length(tasks);

The regular expression looks for those task numbers that do not have a Done
or Pending status. Note that you can use the or (|) operator in a lookaround
to check for more than one condition:

doNow = regexp(tasks, '(?<!^(Done|Pending).*)\d+', 'match');

Now print out the results:

disp 'The following tasks need attention:'
for k=1:count

s = char(doNow{k});
if ~isempty(s), fprintf(' %s\n', s), end

end

The output displays all but the Done and Pending tasks:

The following tasks need attention:
3892457
7746642

2-66

Regular Expressions

2410275
9959114
2760482
3080027

Using Lookaround as a Logical Operator
One way in which a lookahead operation can be useful is to perform a logical
AND between two conditions. This example initially attempts to locate all
lowercase consonants in a text string. The text string is the first 50 characters
of the help for the normest function:

helptext = help('normest');
str = helptext(1:50)
str =
NORMEST Estimate the matrix 2-norm.

NORMEST(S

Merely searching for non-vowels ([^aeiouAEIOU]) does not return the
expected answer, as the output includes capital letters, space characters,
and punctuation:

c = regexp(str, '[^aeiouAEIOU]', 'match')
c =

Columns 1 through 12
' ' 'N' 'R' 'M' 'S' 'T' ' ' 's' 't' 'm' 't'

-- etc. --

Try this again, using a lookahead operator to create the following AND
condition:

(lowercase letter) AND (not a vowel).

This time, the result is correct:

c = regexp(str, '(?=[a-z])[^aeiou]', 'match')
c =

's' 't' 'm ' 't' 't' 'h' 'm' 't' 'r' 'x'
'n' 'r' 'm'

2-67

2 Program Components

Note that when using a lookahead operator to perform an AND, you need to
place the match expression expr after the test expression test:

(?=test)expr or (?!test)expr

Quantifiers
With the quantifiers shown below, you can specify how many instances of an
element are to be matched. The basic quantifying operators are listed in
the first six rows of the table.

By default, MATLAB matches as much of an expression as possible. Using
the operators shown in the last two rows of the table, you can override this
default behavior. Specify these options by appending a + or ? immediately
following one of the six basic quantifying operators.

Operator Usage

expr{m,n} Must occur at least m times but no more than n times.

expr{m,} Must occur at least m times.

expr{n} Must match exactly n times. Equivalent to {n,n}.

expr? Match the preceding element 0 times or 1 time. Equivalent
to {0,1}.

expr* Match the preceding element 0 or more times. Equivalent
to {0,}.

expr+ Match the preceding element 1 or more times. Equivalent
to {1,}.

q_expr+ Match as much of the quantified expression as possible, but
do not rescan any portions of the string if the initial match
fails. The term q_expr represents any of the expressions
shown in the top six rows of this table.

q_expr? Match only as much of the quantified expression as
necessary. The term q_expr represents any of the
expressions shown in the top six rows of this table. For an
example, see “Lazy Quantifiers — expr*?” on page 2-70,
below.

2-68

Regular Expressions

Zero or One — expr?
Use ? to make the HTML <code> and </code> tags optional in the string. The
first string, hstr1, contains one occurrence of each tag. Since the expression
uses ()? around the tags, one occurrence is a match:

hstr1 = '<td><code>%%</code>
</td>';
expr = '(<code>)?..(</code>)?
';

regexp(hstr1, expr, 'match')
ans =

'<code>%%</code>
'

The second string, hstr2, does not contain the code tags at all. Just the same,
the expression matches because ()? allows for zero occurrences of the tags:

hstr2 = '<td>%%
</td>';
expr = '(<code>)?..(</code>)?
';

regexp(hstr2, expr, 'match')
ans =

'%%
'

Zero or More — expr*
The first regexp command looks for at least one occurrence of
 and finds
it. The second command parses a different string for at least one
 and
fails. The third command uses * to parse the same line for zero or more line
breaks and this time succeeds.

hstr1 = '<p>This string has

line breaks</p>';
regexp(hstr1, '<p>.*(
).*</p>', 'match')
ans =

'<p>This string has

line breaks</p>';

hstr2 = '<p>This string has no line breaks</p>';
regexp(hstr2, '<p>.*(
).*</p>', 'match')
ans =

{}

regexp(hstr2, '<p>.*(
)*.*</p>', 'match')

2-69

2 Program Components

ans =
'<p>This string has no line breaks</p>';

One or More — expr+
Use + to verify that the HTML image source is not empty. This looks for one
or more characters in the gif filename:

hstr = '';
expr = '<img src="\w+.gif';

regexp(hstr, expr, 'match')
ans =

'<img src="b_prev.gif'

Exact, Minimum, and Maximum Quantities — {min,max}
Use {m}, {m,}, and {m,n} to verify the href syntax used in HTML. This
statement requires the href to have at least one nonwhitespace character,
followed by exactly one occurrence of .html, optionally followed by # and
five to eight digits:

hstr = '';
expr = '<a href="\w{1,}(\.html){1}(\#\d{5,8}){0,1}"';

regexp(hstr, expr, 'match')
ans =

'<a href="s13.html#18760"'

Lazy Quantifiers — expr*?
This example shows the difference between the default (greedy) quantifier
and the lazy quantifier (?). The first part of the example uses the default
quantifier to match all characters from the opening <tr to the ending </td:

hstr = '<tr valign=top><td>
</td>';
regexp(hstr, '</?t.*>', 'match')
ans =

2-70

Regular Expressions

'<tr valign=top><td>
</td>'

The second part uses the lazy quantifier to match the minimum number of
characters between <tr, <td, or </td tags:

regexp(hstr, '</?t.*?>', 'match')
ans =

'<tr valign=top>' '<td>' '</td>'

Tokens
Parentheses used in a regular expression not only group elements of that
expression together, but also designate any matches found for that group as
tokens. You can use tokens to match other parts of the same string. One
advantage of using tokens is that they remember what they matched, so you
can recall and reuse matched text in the process of searching or replacing.

This section covers

• “Operators Used with Tokens” on page 2-71

• “Introduction to Using Tokens” on page 2-72

• “Using Tokens — Example 1” on page 2-73

• “Using Tokens — Example 2” on page 2-73

• “Tokens That Are Not Matched” on page 2-74

• “Using Tokens in a Replacement String” on page 2-76

Operators Used with Tokens
Here are the operators you can use with tokens in MATLAB.

Operator Usage

(expr) Capture in a token all characters matched by the
expression within the parentheses.

\N Match the Nth token generated by this command. That is,
use \1 to match the first token, \2 to match the second,
and so on.

2-71

2 Program Components

Operator Usage

$N Insert the match for the Nth token in the replacement
string. Used only by the regexprep function. If N
is equal to zero, then insert the entire match in the
replacement string.

(?(N)s1|s2) If Nth token is found, then match s1, else match s2

Introduction to Using Tokens
You can turn any pattern being matched into a token by enclosing the pattern
in parentheses within the expression. For example, to create a token for
a dollar amount, you could use ’(\$\d+)’. Each token in the expression is
assigned a number, starting from 1, going from left to right. To make a
reference to a token later in the expression, refer to it using a backslash
followed by the token number. For example, when referencing a token
generated by the third set of parentheses in the expression, use \3.

As a simple example, if you wanted to search for identical sequential letters
in a string, you could capture the first letter as a token and then search for a
matching character immediately afterwards. In the expression shown below,
the (\S) phrase creates a token whenever regexpmatches any nonwhitespace
character in the string. The second part of the expression, '\1', looks for a
second instance of the same character immediately following the first:

poestr = ['While I nodded, nearly napping, ' ...
'suddenly there came a tapping,'];

[mat tok ext] = regexp(poestr, '(\S)\1', 'match', ...
'tokens', 'tokenExtents');

mat
mat =

'dd' 'pp' 'dd' 'pp'

The tokens returned in cell array tok are:

'd', 'p', 'd', 'p'

Starting and ending indices for each token in the input string poestr are:

2-72

Regular Expressions

11 11, 26 26, 35 35, 57 57

Using Tokens — Example 1
Here is an example of how tokens are assigned values. Suppose that you
are going to search the following text:

andy ted bob jim andrew andy ted mark

You choose to search the above text with the following search pattern:

and(y|rew)|(t)e(d)

This pattern has three parenthetical expressions that generate tokens. When
you finally perform the search, the following tokens are generated for each
match.

Match Token 1 Token 2

andy y

ted t d

andrew rew

andy y

ted t d

Only the highest level parentheses are used. For example, if the search
pattern and(y|rew) finds the text andrew, token 1 is assigned the value rew.
However, if the search pattern (and(y|rew)) is used, token 1 is assigned
the value andrew.

Using Tokens — Example 2
Use (expr) and \N to capture pairs of matching HTML tags (e.g., <a> and
) and the text between them. The expression used for this example is

expr = '<(\w+).*?>.*?</\1>';

2-73

2 Program Components

The first part of the expression, ’<(\w+)’, matches an opening bracket (<)
followed by one or more alphabetic, numeric, or underscore characters. The
enclosing parentheses capture token characters following the opening bracket.

The second part of the expression, ’.*?>.*?’, matches the remainder of this
HTML tag (characters up to the >), and any characters that may precede the
next opening bracket.

The last part, '</\1>', matches all characters in the ending HTML tag. This
tag is composed of the sequence </tag>, where tag is whatever characters
were captured as a token.

hstr = '<!comment>Default
';
expr = '<(\w+).*?>.*?</\1>';

[mat tok] = regexp(hstr, expr, 'match', 'tokens');
mat{:}
ans =

ans =

Default

tok{:}
ans =

'a'
ans =

'b'

Tokens That Are Not Matched
For those tokens specified in the regular expression that have no match in the
string being evaluated, regexp and regexpi return an empty string ('') as
the token output, and an extent that marks the position in the string where
the token was expected.

The example shown here executes regexp on the path string str returned
from the MATLAB tempdir function. The regular expression expr includes
six token specifiers, one for each piece of the path string. The third specifier

2-74

Regular Expressions

[a-z]+ has no match in the string because this part of the path, Profiles,
begins with an uppercase letter:

str = tempdir
str =

C:\WINNT\Profiles\bpascal\LOCALS~1\Temp\

expr = ['([A-Z]:)\\(WINNT)\\([a-z]+)?.*\\' ...
'([a-z]+)\\([A-Z]+~\d)\\(Temp)\\'];

[tok ext] = regexp(str, expr, 'tokens', 'tokenExtents');

When a token is not found in a string, MATLAB still returns a token string
and token extent. The returned token string is an empty character string
(''). The first number of the extent is the string index that marks where the
token was expected, and the second number of the extent is equal to one
less than the first.

In the case of this example, the empty token is the third specified in the
expression, so the third token string returned is empty:

tok{:}
ans =

'C:' 'WINNT' '' 'bpascal' 'LOCALS~1' 'Temp'

The third token extent returned in the variable ext has the starting index
set to 10, which is where the nonmatching substring, Profiles, begins in the
string. The ending extent index is set to one less than the starting index, or 9:

ext{:}
ans =

1 2
4 8

10 9
19 25
27 34
36 39

2-75

2 Program Components

Using Tokens in a Replacement String
When using tokens in a replacement string, reference them using $1, $2, etc.
instead of \1, \2, etc. This example captures two tokens and reverses their
order. The first, $1, is 'Norma Jean' and the second, $2, is 'Baker'. Note
that regexprep returns the modified string, not a vector of starting indices.

regexprep('Norma Jean Baker', '(\w+\s\w+)\s(\w+)', '$2, $1')
ans =

Baker, Norma Jean

Named Capture
If you use a lot of tokens in your expressions, it may be helpful to assign them
names rather than having to keep track of which token number is assigned
to which token. Use the following operator to assign a name to a token that
finds a match.

Operator Usage

(?<name>expr) Capture in a token all characters matched by the
expression within the parentheses. Assign a name to
the token.

\k<name> Match the token referred to by name.

$<name> Insert the match for named token in a replacement
string. Used only with the regexprep function.

(?(name)s1|s2) If named token is found, then match s1; otherwise,
match s2

When referencing a named token within the expression, use the syntax
\k<name> instead of the numeric \1, \2, etc.:

poestr = ['While I nodded, nearly napping, ' ...
'suddenly there came a tapping,'];

regexp(poestr, '(?<anychar>.)\k<anychar>', 'match')
ans =

'dd' 'pp' 'dd' 'pp'

2-76

Regular Expressions

Labeling Your Output
Named tokens can also be useful in labeling the output from the MATLAB
regular expression functions. This is especially true when you are processing
numerous strings.

This example parses different pieces of street addresses from several strings.
A short name is assigned to each token in the expression string:

str1 = '134 Main Street, Boulder, CO, 14923';
str2 = '26 Walnut Road, Topeka, KA, 25384';
str3 = '847 Industrial Drive, Elizabeth, NJ, 73548';

p1 = '(?<adrs>\d+\s\S+\s(Road|Street|Avenue|Drive))';
p2 = '(?<city>[A-Z][a-z]+)';
p3 = '(?<state>[A-Z]{2})';
p4 = '(?<zip>\d{5})';

expr = [p1 ', ' p2 ', ' p3 ', ' p4];

As the following results demonstrate, you can make your output easier to
work with by using named tokens:

loc1 = regexp(str1, expr, 'names')
loc1 =

adrs: '134 Main Street'
city: 'Boulder'

state: 'CO'
zip: '14923'

loc2 = regexp(str2, expr, 'names')
loc2 =

adrs: '26 Walnut Road'
city: 'Topeka'

state: 'KA'
zip: '25384'

loc3 = regexp(str3, expr, 'names')
loc3 =

adrs: '847 Industrial Drive'
city: 'Elizabeth'

2-77

2 Program Components

state: 'NJ'
zip: '73548'

Conditional Expressions
With conditional expressions, you can tell MATLAB to match an expression
only if a certain condition is true. A conditional expression is similar to an
if-then or an if-then-else clause in programming. MATLAB first tests the
state of a given condition, and the outcome of this tests determines what, if
anything, is to be matched next. The following table shows the two conditional
syntaxes you can use with MATLAB.

Operator Usage

(?(cond)expr) If condition cond is true, then match expression
expr

(?(cond)expr1|expr2) If condition cond is true, then match expression
expr1. Otherwise match expression expr2

The first entry in this table is the same as an if-then statement. MATLAB
tests the state of condition cond and then matches expression expr only if
the condition was found to be true. In the form of an if-then statement, it
would look like this:

if cond then expr

The second entry in the table is the same as an if-then-else statement.
If the condition is true, MATLAB matches expr1; if false, it matches expr2
instead. This syntax is equivalent to the following programming statement:

if cond then expr1 else expr2

The condition cond in either of these syntaxes can be any one of the following:

• A specific token, identified by either number or name, is located in the
input string. See “Conditions Based on Tokens” on page 2-79, below.

• A lookaround operation results in a match. See “Conditions Based on a
Lookaround Match” on page 2-80, below.

• A dynamic expression of the form (?@cmd) returns a nonzero numeric
value. See “Conditions Based on Return Values” on page 2-80, below.

2-78

Regular Expressions

Conditions Based on Tokens
In a conditional expression, MATLAB matches the expression only if the
condition associated with it is met. If the condition is based on a token,
then the condition is met if MATLAB matches more than one character for
the token in the input string.

To specify a token in a condition, use either the token number or, for tokens
that you have assigned a name to, its name. Token numbers are determined
by the order in which they appear in an expression. For example, if you
specify three tokens in an expression (that is, if you enclose three parts of
the expression in parentheses), then you would refer to these tokens in a
condition statement as 1, 2, and 3.

The following example uses the conditional statement (?(1)her|his) to
match the string regardless of the gender used. You could translate this into
the phrase, “if token 1 is found (i.e., Mr is followed by the letter s), then
match her, else match his:

expr = 'Mr(s?)\..*?(?(1)her|his) son';

[mat tok] = regexp('Mr. Clark went to see his son', ...
expr, 'match', 'tokens')

mat =
'Mr. Clark went to see his son'

tok =
{1x2 cell}

tok{:}
ans =

'' 'his'

In the second part of the example, the token s is found and MATLAB matches
the word her:

[mat tok] = regexp('Mrs. Clark went to see her son', ...
expr, 'match', 'tokens')
mat =

'Mrs. Clark went to see her son'
tok =

{1x2 cell}

2-79

2 Program Components

tok{:}
ans =

's' 'her'

Note When referring to a token within a condition, use just the number of
the token. For example, refer to token 2 by using the number 2 alone, and
not \2 or $2.

Conditions Based on a Lookaround Match
Lookaround statements look for text that either precedes or follows an
expression. If this lookaround text is located, then MATLAB proceeds to
match the expression. You can also use lookarounds in conditional statements.
In this case, if the lookaround text is located, then MATLAB considers the
condition to be met and matches the associated expression. If the condition is
not met, then MATLAB matches the else part of the expression.

Conditions Based on Return Values
MATLAB supports different types of dynamic expressions. One type of
dynamic expression, having the form (?@cmd), enables you to execute a
MATLAB command (shown here as cmd) while matching an expression.
You can use this type of dynamic expression in a conditional statement if
the command in the expression returns a numeric value. The condition is
considered to be met if the return value is nonzero.

Dynamic Regular Expressions
In a dynamic expression, you can make the pattern that you want regexp to
match dependent on the content of the input string. In this way, you can
more closely match varying input patterns in the string being parsed. You
can also use dynamic expressions in replacement strings for use with the
regexprep function. This gives you the ability to adapt the replacement text
to the parsed input.

You can include any number of dynamic expressions in the match_expr or
replace_expr arguments of these commands:

2-80

Regular Expressions

regexp(string, match_expr)
regexpi(string, match_expr)
regexprep(string, match_expr, replace_expr)

MATLAB supports three types of dynamic operators for use in a match
expression. See “Dynamic Operators for the Match Expression” on page 2-82
for more information.

Operator Usage

(??expr) Parse expr as a separate regular expression, and include the
resulting string in the match expression. This gives you the
same results as if you called regexprep inside of a regexp
match expression.

(?@cmd) Execute the MATLAB command cmd, discarding any output
that may be returned. This is often used for diagnosing a
regular expression.

(??@cmd) Execute the MATLAB command cmd, and include the string
returned by cmd in the match expression. This is a combination
of the two dynamic syntaxes shown above: (??expr) and
(?@cmd).

MATLAB supports one type of dynamic expression for use in the replacement
expression of a regexprep command. See “Dynamic Operators for the
Replacement Expression” on page 2-87 for more information.

Operator Usage

${cmd} Execute the MATLAB command cmd, and include the string
returned by cmd in the replacement expression.

Example of a Dynamic Expression
As an example of a dynamic expression, the following regexprep command
correctly replaces the term internationalization with its abbreviated form,
i18n. However, to use it on a different term such as globalization, you have
to use a different replacement expression:

match_expr = '(^\w)(\w*)(\w$)';

2-81

2 Program Components

replace_expr1 = '$118$3';
regexprep('internationalization', match_expr, replace_expr1)
ans =

i18n

replace_expr2 = '$111$3';
regexprep('globalization', match_expr, replace_expr2)
ans =

g11n

Using a dynamic expression ${num2str(length($2))} enables you to base
the replacement expression on the input string so that you do not have to
change the expression each time. This example uses the dynamic syntax
${cmd} from the second table shown above:

match_expr = '(^\w)(\w*)(\w$)';
replace_expr = '1{num2str(length($2))}$3';

regexprep('internationalization', match_expr, replace_expr)
ans =

i18n

regexprep('globalization', match_expr, replace_expr)
ans =

g11n

Dynamic Operators for the Match Expression
There are three types of dynamic expressions you can use when composing
a match expression:

• “Dynamic Expressions That Modify the Match Expression — (??expr)” on
page 2-83

• “Dynamic Commands That Modify the Match Expression — (??@cmd)”
on page 2-84

• “Dynamic Commands That Serve a Functional Purpose — (?@cmd)” on
page 2-85

The first two of these actually modify the match expression itself so that it
can be made specific to changes in the contents of the input string. When

2-82

Regular Expressions

MATLAB evaluates one of these dynamic statements, the results of that
evaluation are included in the same location within the overall match
expression.

The third operator listed here does not modify the overall expression, but
instead enables you to run MATLAB commands during the parsing of a
regular expression. This functionality can be useful in diagnosing your
regular expressions.

Dynamic Expressions That Modify the Match Expression — (??expr).
The (??expr) operator parses expression expr, and inserts the results back
into the match expression. MATLAB then evaluates the modified match
expression.

Here is an example of the type of expression that you can use with this
operator:

str = {'5XXXXX', '8XXXXXXXX', '1X'};
regexp(str, '^(\d+)(??X{$1})$', 'match', 'once')

The purpose of this particular command is to locate a series of X characters
in each of the strings stored in the input cell array. Note however that the
number of Xs varies in each string. If the count did not vary, you could use the
expression X{n} to indicate that you want to match n of these characters. But,
a constant value of n does not work in this case.

The solution used here is to capture the leading count number (e.g., the 5 in
the first string of the cell array) in a token, and then to use that count in a
dynamic expression. The dynamic expression in this example is (??X{$1}),
where $1 is the value captured by the token \d+. The operator {$1} makes a
quantifier of that token value. Because the expression is dynamic, the same
pattern works on all three of the input strings in the cell array. With the first
input string, regexp looks for five X characters; with the second, it looks for
eight, and with the third, it looks for just one:

regexp(str, '^(\d+)(??X{$1})$', 'match', 'once')
ans =

'5XXXXX' '8XXXXXXXX' '1X'

2-83

2 Program Components

Dynamic Commands That Modify the Match Expression — (??@cmd).
MATLAB uses the (??@function) operator to include the results of a
MATLAB command in the match expression. This command must return a
string that can be used within the match expression.

The regexp command below uses the dynamic expression (??@flilplr($1))
to locate a palindrome string, “Never Odd or Even”, that has been embedded
into a larger string:

regexp(pstr, '(.{3,}).?(??@fliplr($1))', 'match')

The dynamic expression reverses the order of the letters that make up the
string, and then attempts to match as much of the reversed-order string as
possible. This requires a dynamic expression because the value for $1 relies
on the value of the token (.{3,}):

% Put the string in lowercase.
str = lower(...

'Find the palindrome Never Odd or Even in this string');

% Remove all nonword characters.
str = regexprep(str, '\W*', '')
str =

findthepalindromeneveroddoreveninthisstring

% Now locate the palindrome within the string.
palstr = regexp(str, '(.{3,}).?(??@fliplr($1))', 'match')
str =

'neveroddoreven'

Dynamic expressions in MATLAB have access to the currently active
workspace. This means that you can change any of the functions or variables
used in a dynamic expression just by changing variables in the workspace.
Repeat the last command of the example above, but this time define the
function to be called within the expression using a function handle stored in
the base workspace:

fun = @fliplr;

palstr = regexp(str, '(.{3,}).?(??@fun($1))', 'match')
palstr =

2-84

Regular Expressions

'neveroddoreven'

Dynamic Commands That Serve a Functional Purpose — (?@cmd). The
(?@cmd) operator specifies a MATLAB command that regexp or regexprep
is to run while parsing the overall match expression. Unlike the other
dynamic expressions in MATLAB, this operator does not alter the contents
of the expression it is used in. Instead, you can use this functionality to get
MATLAB to report just what steps it is taking as it parses the contents of one
of your regular expressions.

The following example parses a word for zero or more characters followed by
two identical characters followed again by zero or more characters:

regexp('mississippi', '\w*(\w)\1\w*', 'match')
ans =

'mississippi'

To track the exact steps that MATLAB takes in determining the match, the
example inserts a short script (?@disp($1)) in the expression to display
the characters that finally constitute the match. Because the example uses
greedy quantifiers, MATLAB attempts to match as much of the string as
possible. So, even though MATLAB finds a match toward the beginning of the
string, it continues to look for more matches until it arrives at the very end of
the string. From there, it backs up through the letters i then p and the next
p, stopping at that point because the match is finally satisfied:

regexp('mississippi', '\w*(\w)(?@disp($1))\1\w*');
i
p
p

Now try the same example again, this time making the first quantifier lazy
(*?). Again, MATLAB makes the same match:

regexp('mississippi', '\w*?(\w)\1\w*', 'match')
ans =

'mississippi'

But by inserting a dynamic script, you can see that this time, MATLAB has
matched the string quite differently. In this case, MATLAB uses the very first
match it can find, and does not even consider the rest of the string:

2-85

2 Program Components

regexp('mississippi', '\w*?(\w)(?@disp($1))\1\w*';)
m
i
s

To demonstrate how versatile this type of dynamic expression can be, consider
the next example that progressively assembles a cell array as MATLAB
iteratively parses the input string. The (?!) operator found at the end of the
expression is actually an empty lookahead operator, and forces a failure at
each iteration. This forced failure is necessary if you want to trace the steps
that MATLAB is taking to resolve the expression.

MATLAB makes a number of passes through the input string, each time
trying another combination of letters to see if a fit better than last match can
be found. On any passes in which no matches are found, the test results in
an empty string. The dynamic script (?@if(~isempty($&))) serves to omit
these strings from the matches cell array:

matches = {};
expr = ['(Euler\s)?(Cauchy\s)?(Boole)?(?@if(~isempty($&)),' ...

'matches{end+1}=$&;end)(?!)'];

regexp('Euler Cauchy Boole', expr);

matches
matches =

'Euler Cauchy Boole' 'Euler Cauchy ' 'Euler '
'Cauchy Boole' 'Cauchy ' 'Boole'

The operators $& (or the equivalent $0), $`, and $' refer to that part of the
input string that is currently a match, all characters that precede the current
match, and all characters to follow the current match, respectively. These
operators are sometimes useful when working with dynamic expressions,
particularly those that employ the (?@cmd) operator.

This example parses the input string looking for the letter g. At each iteration
through the string, regexp compares the current character with g, and not
finding it, advances to the next character. The example tracks the progress of
scan through the string by marking the current location being parsed with a
^ character.

2-86

Regular Expressions

(The $` and $· operators capture that part of the string that precedes and
follows the current parsing location. You need two single-quotation marks
($'') to express the sequence $· when it appears within a string.)

str = 'abcdefghij';
expr = '(?@disp(sprintf(''starting match: [%s^%s]'',$`,$'')))g';

regexp(str, expr, 'once');
starting match: [^abcdefghij]
starting match: [a^bcdefghij]
starting match: [ab^cdefghij]
starting match: [abc^defghij]
starting match: [abcd^efghij]
starting match: [abcde^fghij]
starting match: [abcdef^ghij]

Dynamic Operators for the Replacement Expression
The three types of dynamic expressions discussed above can be used only
in the match expression (second input) argument of the regular expression
functions. MATLAB provides one more type of dynamic expression; this one
is for use in a replacement string (third input) argument of the regexprep
function.

Dynamic Commands That Modify the Replacement Expression —
${cmd}. The ${cmd} operator modifies the contents of a regular expression
replacement string, making this string adaptable to parameters in the
input string that might vary from one use to the next. As with the other
dynamic expressions used in MATLAB, you can include any number of these
expressions within the overall replacement expression.

In the regexprep call shown here, the replacement string is
'${convert($1,$2)}'. In this case, the entire replacement string is a
dynamic expression:

regexprep('This highway is 125 miles long', ...
'(\d+\.?\d*)\W(\w+)', '${convert($1,$2)}')

The dynamic expression tells MATLAB to execute a function named convert
using the two tokens (\d+\.?\d*) and (\w+), derived from the string being

2-87

2 Program Components

matched, as input arguments in the call to convert. The replacement string
requires a dynamic expression because the values of $1 and $2 are generated
at runtime.

The following example defines the file named convert that converts
measurements from imperial units to metric. To convert values from the
string being parsed, regexprep calls the convert function, passing in values
for the quantity to be converted and name of the imperial unit:

function valout = convert(valin, units)
switch(units)

case 'inches'
fun = @(in)in .* 2.54; uout = 'centimeters';

case 'miles'
fun = @(mi)mi .* 1.6093; uout = 'kilometers';

case 'pounds'
fun = @(lb)lb .* 0.4536; uout = 'kilograms';

case 'pints'
fun = @(pt)pt .* 0.4731; uout = 'litres';

case 'ounces'
fun = @(oz)oz .* 28.35; uout = 'grams';

end
val = fun(str2num(valin));
valout = [num2str(val) ' ' uout];

regexprep('This highway is 125 miles long', ...
'(\d+\.?\d*)\W(\w+)', '${convert($1,$2)}')

ans =
This highway is 201.1625 kilometers long

regexprep('This pitcher holds 2.5 pints of water', ...
'(\d+\.?\d*)\W(\w+)', '${convert($1,$2)}')

ans =
This pitcher holds 1.1828 litres of water

regexprep('This stone weighs about 10 pounds', ...
'(\d+\.?\d*)\W(\w+)', '${convert($1,$2)}')

2-88

Regular Expressions

ans =
This stone weighs about 4.536 kilograms

As with the (??@) operator discussed in an earlier section, the ${ } operator
has access to variables in the currently active workspace. The following
regexprep command uses the array A defined in the base workspace:

A = magic(3)
A =

8 1 6
3 5 7
4 9 2

regexprep('The columns of matrix _nam are _val', ...
{'_nam', '_val'}, ...
{'A', '${sprintf(''%d%d%d '', A)}'})

ans =
The columns of matrix A are 834 159 672

String Replacement
The regexprep function enables you to replace a string that is identified
by a regular expression with another string. The following syntax replaces
all occurrences of the regular expression expr in string str with the string
repstr. The new string is returned in s. If no matches are found, return
string s is the same as input string str.

s = regexprep('str', 'expr', 'repstr')

The replacement string can include any ordinary characters and also any of
the operators shown in the following table.

Operator Usage

Operators from the “Character
Representation” on page 2-57 table

The character represented by the
operator sequence

$` That part of the input string that
precedes the current match

2-89

2 Program Components

Operator Usage

$& or $0 That part of the input string that is
currently a match

$' That part of the input string that
follows the current match. In
MATLAB, use $'' to represent the
character sequence $'

$N The string represented by the token
identified by the number N

$<name> The string represented by the token
identified by name

${cmd} The string returned when MATLAB
executes the command cmd

You can capture parts of the input string as tokens and then reuse them in
the replacement string. Specify the parts of the string to capture using the
token capture operator (...). Specify the tokens to use in the replacement
string using the operators $1, $2, $N to reference the first, second, and Nth
tokens captured. (See the section on “Tokens” on page 2-71 and the example
“Using Tokens in a Replacement String” on page 2-76 in this documentation
for information on using tokens.)

Note When referring to a token within a replacement string, use the number
of the token preceded by a dollar sign. For example, refer to token 2 by using
$2, and not 2 or \2.

The following example uses both the ${cmd} and $N operators in the
replacement strings of nested regexprep commands to capitalize the first
letter of each sentence. The inner regexprep looks for the start of the entire
string and capitalizes the single instance; the outer regexprep looks for the
first letter following a period and capitalizes the two instances:

s1 = 'here are a few sentences.';

s2 = 'none are capitalized.';

s3 = 'let''s change that.';

2-90

Regular Expressions

str = [s1 ' ' s2 ' ' s3]

regexprep(regexprep(str, '(^.)', '${upper($1)}'), ...

'(?<=\.\s*)([a-z])','${upper($1)}')

ans =

Here are a few sentences. None are capitalized. Let's change that.

Make regexprep more specific to your needs by specifying any of a number
of options with the command. See the regexprep reference page for more
information on these options.

Handling Multiple Strings
You can use any of the MATLAB regular expression functions with cell arrays
of strings as well as with single strings. Any or all of the input parameters
(the string, expression, or replacement string) can be a cell array of strings.
The regexp function requires that the string and expression arrays have
the same number of elements. The regexprep function requires that the
expression and replacement arrays have the same number of elements. (The
cell arrays do not have to have the same shape.)

Whenever either input argument in a call to regexp, or the first input
argument in a call to regexprep function is a cell array, all output values are
cell arrays of the same size.

Function, Mode Options, Operator, Return Value
Summaries

• “Function Summary” on page 2-92

• “Mode Options Summary” on page 2-92

• “Operator Summary” on page 2-93

• “Return Value Summary” on page 2-99

2-91

2 Program Components

Function Summary

MATLAB Regular Expression Functions

Function Description

regexp Match regular expression.

regexpi Match regular expression, ignoring case.

regexprep Replace string using regular expression.

regexptranslate Translate string into regular expression.

Mode Options Summary

Mode Keyword Flag Description

'ignorecase' (?i) Do not consider letter case when matching
patterns to a string (the default for
regexpi).

'matchcase' (?-i) Letter case must match when matching
patterns to a string (the default for regexp).

'noemptymatch' N/A Do not allow successful matches of length
zero (the default).

'emptymatch' N/A Allow successful matches of length zero.

'dotall' (?s) Match dot ('.') in the pattern string with
any character (the default).

'dotexceptnewline' (?-s) Match dot in the pattern with any character
that is not a newline.

'lineanchors' (?m) Match the ^ and $ metacharacters at the
beginning and end of a line.

'stringanchors' (?-m) Match the ^ and $ metacharacters at the
beginning and end of a string (the default).

2-92

Regular Expressions

Mode Keyword Flag Description

'freespacing' (?x) Ignore spaces and comments when parsing
the string. (You must use '\ ' and '\#' to
match space and # characters.)

'literalspacing' (?-x) Parse space characters and comments (the
character and any text to the right of it)
in the same way as any other characters in
the string (the default).

Operator Summary

Character Types

Operator Usage

. Any single character, including white space

[c1c2c3] Any character contained within the brackets: c1 or c2
or c3

[^c1c2c3] Any character not contained within the brackets:
anything but c1 or c2 or c3

[c1-c2] Any character in the range of c1 through c2

\s Any white-space character; equivalent to [
\f\n\r\t\v]

\S Any nonwhitespace character; equivalent to
[^ \f\n\r\t\v]

\w Any alphabetic, numeric, or underscore character
(For English character sets, this is equivalent to
[a-zA-Z_0-9].)

\W Any character that is not alphabetic, numeric,
or underscore (For English character sets, this is
equivalent to [^a-zA-Z_0-9].)

\d Any numeric digit; equivalent to [0-9]

\D Any nondigit character; equivalent to [^0-9]

2-93

2 Program Components

Character Types (Continued)

Operator Usage

\oN or \o{N} Character of octal value N

\xN or \x{N} Character of hexadecimal value N

Character Representation

Operator Usage

\\ Backslash

\a Alarm (beep)

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\char If a character has special meaning in a regular
expression, precede it with backslash (\) to match it
literally.

Grouping Operators

Operator Usage

(expr) Group regular expressions and capture tokens.

(?:expr) Group regular expressions, but do not capture tokens.

(?>expr) Group atomically.

expr1|expr2 Match expression expr1 or expression expr2.

2-94

Regular Expressions

Nonmatching Operators

Operator Usage

(?#comment) Insert a comment into the expression. Comments are
ignored in matching.

Positional Operators

Operator Usage

^expr Match expr if it occurs at the beginning of the input
string.

expr$ Match expr if it occurs at the end of the input string.

\<expr Match expr when it occurs at the beginning of a
word.

expr\> Match expr when it occurs at the end of a word.

\<expr\> Match expr when it represents the entire word.

Lookaround Operators

Operator Usage

(?=expr) Look ahead from current position and test if expr
is found.

(?!expr) Look ahead from current position and test if expr
is not found

(?<=expr) Look behind from current position and test if expr
is found.

(?<!expr) Look behind from current position and test if expr
is not found.

2-95

2 Program Components

Quantifiers

Operator Usage

expr{m,n} Match expr when it occurs at least m times but no more
than n times consecutively.

expr{m,} Match exprwhen it occurs at least m times consecutively.

expr{n} Match exprwhen it occurs exactly n times consecutively.
Equivalent to {n,n}.

expr? Match expr when it occurs 0 times or 1 time. Equivalent
to {0,1}.

expr* Match expr when it occurs 0 or more times
consecutively. Equivalent to {0,}.

expr+ Match expr when it occurs 1 or more times
consecutively. Equivalent to {1,}.

q_expr Match as much of the quantified expression as possible,
where q_expr represents any of the expressions shown
in the first six rows of this table.

q_expr+ Match as much of the quantified expression as possible,
but do not rescan any portions of the string if the initial
match fails.

q_expr? Match only as much of the quantified expression as
necessary.

Ordinal Token Operators

Operator Usage

(expr) Capture in a token all characters matched by the
expression within the parentheses.

\N Match the Nth token generated by this command. That is,
use \1 to match the first token, \2 to match the second,
and so on.

2-96

Regular Expressions

Ordinal Token Operators (Continued)

Operator Usage

$N Insert the match for the Nth token in the replacement
string. If N is equal to zero, then insert the entire match
in the replacement string. (Used only by the regexprep
function.)

(?(N)s1|s2) If Nth token is found, then match s1; otherwise, match s2.

Named Token Operators

Operator Usage

(?<name>expr) Capture in a token all characters matched by the
expression within the parentheses. Assign a name value
to the token.

\k<name> Match the token referred to by name.

$<name> Insert the match for named token in a replacement
string. (Used only with the regexprep function.)

(?(name)s1|s2) If named token is found, then match s1; otherwise,
match s2.

Conditional Expression Operators

Operator Usage

(?(cond)expr) If condition cond is true, then match expression
expr.

(?(cond)expr1|expr2) If condition cond is true, then match expression
expr1. Otherwise match expression expr2.

2-97

2 Program Components

Dynamic Expression Operators

Operator Usage

(??expr) Parse expr as a separate regular expression, and
include the resulting string in the match expression.
This gives you the same results as if you called
regexprep inside of a regexp match expression.

(??@cmd) Execute the MATLAB command represented by cmd,
and include the string returned by the command in
the match expression. This is a combination of the two
dynamic syntaxes shown previously: (??expr) and
(?@cmd).

(?@cmd) Execute the MATLAB command represented by cmd
and discard any output the command returns. (Helpful
for diagnosing regular expressions).

${cmd} Execute the MATLAB command represented by cmd,
and include the string returned by the command in the
replacement expression.

Replacement String Operators

Operator Usage

Operators from “Character
Representation” on page 2-57
table

The character represented by the
operator sequence

$' That part of the input string that
precedes the current match

$& or $0 That part of the input string that is
currently a match

$' That part of the input string that
follows the current match (In
MATLAB, use $'' to represent the
character sequence $'.)

$N The string represented by the token
identified by name

2-98

Regular Expressions

Replacement String Operators (Continued)

Operator Usage

$<name> The string represented by the token
identified by name

${cmd} The string returned when MATLAB
executes the command cmd

Return Value Summary

Qualifier Description Default
Order

start Row vector containing the starting index of each substring of
str that matches expr

1

end Row vector containing the ending index of each substring of
str that matches expr

2

tokenExtents Cell array containing the starting and ending indices of each
substring of str that matches a token in expr (This is a
double array when used with 'once'.)

3

match Cell array containing the text of each substring of str that
matches expr (This is a string when used with 'once'.)

4

tokens Cell array of cell arrays of strings containing the text of each
token captured by regexp (This is a cell array of strings when
used with 'once'.)

5

names Structure array containing the name and text of each named
token captured by regexp (If there are no named tokens in
expr, regexp returns a structure array with no fields.)

Field names of the returned structure are set to the token
names, and field values are the text of those tokens. Named
tokens are generated by the expression (?<tokenname>).

6

split Cell array containing those parts of the input string that are
delimited by substrings returned when using the regexp
'match' option

7

2-99

2 Program Components

Comma-Separated Lists

In this section...

“What Is a Comma-Separated List?” on page 2-100

“Generating a Comma-Separated List” on page 2-100

“Assigning Output from a Comma-Separated List” on page 2-102

“Assigning to a Comma-Separated List” on page 2-103

“How to Use the Comma-Separated Lists” on page 2-104

“Fast Fourier Transform Example” on page 2-106

What Is a Comma-Separated List?
Typing in a series of numbers separated by commas gives you what is called a
comma-separated list. The MATLAB software returns each value individually:

1, 2, 3
ans =

1
ans =

2
ans =

3

Such a list, by itself, is not very useful. But when used with large and
more complex data structures like MATLAB structures and cell arrays, the
comma-separated list can enable you to simplify your MATLAB code.

Generating a Comma-Separated List
This section describes how to generate a comma-separated list from either a
cell array or a MATLAB structure.

Generating a List from a Cell Array
Extracting multiple elements from a cell array yields a comma-separated list.
Given a 4-by-6 cell array as shown here

2-100

Comma-Separated Lists

C = cell(4, 6);
for k = 1:24, C{k} = k * 2; end

C
C =

[2] [10] [18] [26] [34] [42]
[4] [12] [20] [28] [36] [44]
[6] [14] [22] [30] [38] [46]
[8] [16] [24] [32] [40] [48]

extracting the fifth column generates the following comma-separated list:

C{:, 5}
ans =

34
ans =

36
ans =

38
ans =

40

This is the same as explicitly typing

C{1, 5}, C{2, 5}, C{3, 5}, C{4, 5}

Generating a List from a Structure
For structures, extracting a field of the structure that exists across one of its
dimensions yields a comma-separated list.

Start by converting the cell array used above into a 4-by-1 MATLAB structure
with six fields: f1 through f6. Read field f5 for all rows and MATLAB returns
a comma-separated list:

S = cell2struct(C, {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}, 2);

S.f5
ans =

34
ans =

2-101

2 Program Components

36
ans =

38
ans =

40

This is the same as explicitly typing

S(1).f5, S(2).f5, S(3).f5, S(4).f5

Assigning Output from a Comma-Separated List
You can assign any or all consecutive elements of a comma-separated list to
variables with a simple assignment statement. Using the cell array C from
the previous section, assign the first row to variables c1 through c6:

C = cell(4, 6);
for k = 1:24, C{k} = k * 2; end

[c1 c2 c3 c4 c5 c6] = C{1,1:6};

c5
c5 =

34

If you specify fewer output variables than the number of outputs returned by
the expression, MATLAB assigns the first N outputs to those N variables, and
then discards any remaining outputs. In this next example, MATLAB assigns
C{1,1:3} to the variables c1, c2, and c3, and then discards C{1,4:6}:

[c1 c2 c3] = C{1,1:6};

You can assign structure outputs in the same manner:

S = cell2struct(C, {'f1', 'f2', 'f3', 'f4', 'f5', 'f6'}, 2);

[sf1 sf2 sf3] = S.f5;

sf3
sf3 =

38

2-102

Comma-Separated Lists

You also can use the deal function for this purpose.

Assigning to a Comma-Separated List
The simplest way to assign multiple values to a comma-separated list is to
use the deal function. This function distributes all of its input arguments to
the elements of a comma-separated list.

This example initializes a comma-separated list to a set of vectors in a cell
array, and then uses deal to overwrite each element in the list:

c{1} = [31 07]; c{2} = [03 78];

c{:}
ans =

31 7
ans =

3 78

[c{:}] = deal([10 20],[14 12]);

c{:}
ans =

10 20
ans =

14 12

This example does the same as the one above, but with a comma-separated
list of vectors in a structure field:

s(1).field1 = [31 07]; s(2).field1 = [03 78];

s.field1
ans =

31 7
ans =

3 78

2-103

2 Program Components

[s.field1] = deal([10 20],[14 12]);

s.field1
ans =

10 20
ans =

14 12

How to Use the Comma-Separated Lists
Common uses for comma-separated lists are

• “Constructing Arrays” on page 2-104

• “Displaying Arrays” on page 2-105

• “Concatenation” on page 2-105

• “Function Call Arguments” on page 2-105

• “Function Return Values” on page 2-106

The following sections provide examples of using comma-separated lists with
cell arrays. Each of these examples applies to MATLAB structures as well.

Constructing Arrays
You can use a comma-separated list to enter a series of elements when
constructing a matrix or array. Note what happens when you insert a list of
elements as opposed to adding the cell itself.

When you specify a list of elements with C{:, 5}, MATLAB inserts the four
individual elements:

A = {'Hello', C{:, 5}, magic(4)}
A =

'Hello' [34] [36] [38] [40] [4x4 double]

When you specify the C cell itself, MATLAB inserts the entire cell array:

A = {'Hello', C, magic(4)}
A =

'Hello' {4x6 cell} [4x4 double]

2-104

Comma-Separated Lists

Displaying Arrays
Use a list to display all or part of a structure or cell array:

A{:}
ans =

Hello
ans =

34
ans =

36
ans =

38
.
.
.

Concatenation
Putting a comma-separated list inside square brackets extracts the specified
elements from the list and concatenates them:

A = [C{:, 5:6}]
A =

34 36 38 40 42 44 46 48

whos A
Name Size Bytes Class

A 1x8 64 double array

Function Call Arguments
When writing the code for a function call, you enter the input arguments as a
list with each argument separated by a comma. If you have these arguments
stored in a structure or cell array, then you can generate all or part of the
argument list from the structure or cell array instead. This can be especially
useful when passing in variable numbers of arguments.

2-105

2 Program Components

This example passes several attribute-value arguments to the plot function:

X = -pi:pi/10:pi;
Y = tan(sin(X)) - sin(tan(X));

C{1,1} = 'LineWidth'; C{2,1} = 2;
C{1,2} = 'MarkerEdgeColor'; C{2,2} = 'k';
C{1,3} = 'MarkerFaceColor'; C{2,3} = 'g';

plot(X, Y, '--rs', C{:})

Function Return Values
MATLAB functions can also return more than one value to the caller. These
values are returned in a list with each value separated by a comma. Instead
of listing each return value, you can use a comma-separated list with a
structure or cell array. This becomes more useful for those functions that
have variable numbers of return values.

This example returns three values to a cell array:

C = cell(1, 3);
[C{:}] = fileparts('work/mytests/strArrays.mat')
C =

'work/mytests' 'strArrays' '.mat'

Fast Fourier Transform Example
The fftshift function swaps the left and right halves of each dimension of
an array. For a simple vector such as [0 2 4 6 8 10] the output would be
[6 8 10 0 2 4]. For a multidimensional array, fftshift performs this
swap along each dimension.

fftshift uses vectors of indices to perform the swap. For the vector shown
above, the index [1 2 3 4 5 6] is rearranged to form a new index [4 5 6 1
2 3]. The function then uses this index vector to reposition the elements. For
a multidimensional array, fftshift must construct an index vector for each
dimension. A comma-separated list makes this task much simpler.

Here is the fftshift function:

function y = fftshift(x)

2-106

Comma-Separated Lists

numDims = ndims(x);
idx = cell(1, numDims);

for k = 1:numDims
m = size(x, k);
p = ceil(m/2);
idx{k} = [p+1:m 1:p];
end

y = x(idx{:});

The function stores the index vectors in cell array idx. Building this cell array
is relatively simple. For each of the N dimensions, determine the size of that
dimension and find the integer index nearest the midpoint. Then, construct a
vector that swaps the two halves of that dimension.

By using a cell array to store the index vectors and a comma-separated list
for the indexing operation, fftshift shifts arrays of any dimension using
just a single operation: y = x(idx{:}). If you were to use explicit indexing,
you would need to write one if statement for each dimension you want the
function to handle:

if ndims(x) == 1
y = x(index1);

else if ndims(x) == 2
y = x(index1, index2);

end

Another way to handle this without a comma-separated list would be to loop
over each dimension, converting one dimension at a time and moving data
each time. With a comma-separated list, you move the data just once. A
comma-separated list makes it very easy to generalize the swapping operation
to an arbitrary number of dimensions.

2-107

2 Program Components

String Evaluation

In this section...

“Evaluate Expressions in Text Strings” on page 2-108

“Alternatives to the eval Function” on page 2-108

Evaluate Expressions in Text Strings
This example shows how to evaluate a text string that contains a MATLAB
expression, statement, or function call using the eval function.

In its simplest form, the eval syntax is

eval('string')

For example, this code uses eval on an expression to generate a Hilbert
matrix of order n.

t = '1/(m + n - 1)';
for m = 1:k

for n = 1:k
a(m,n) = eval(t);

end
end

String evaluation allows you to execute user-supplied strings from an input
statement or a GUI, or to construct commands by concatenating variable
strings.

Alternatives to the eval Function

• “Why Avoid the eval Function?” on page 2-109

• “Variables with Sequential Names” on page 2-109

• “Files with Sequential Names” on page 2-110

• “Function Names in Variables” on page 2-111

• “Field Names in Variables” on page 2-111

2-108

String Evaluation

• “Error Handling” on page 2-112

Why Avoid the eval Function?
Although the eval function is very powerful and flexible, it not always the
best solution to a programming problem. Code that calls eval is often less
efficient and more difficult to read and debug than code that uses other
functions or language constructs. For example:

• MATLAB compiles code the first time you run it to enhance performance
for future runs. However, because code in an eval statement can change at
run time, it is not compiled.

• Code within an eval statement can unexpectedly create or assign to a
variable already in the current workspace, overwriting existing data.

• Concatenating strings within an eval statement is often difficult to read.
Other language constructs can simplify the syntax in your code.

For many common uses of eval, there are preferred alternate approaches,
as shown in the following examples.

Variables with Sequential Names
A frequent use of the eval function is to create sets of variables such as A1,
A2, ..., An, but this approach does not use the array processing power of
MATLAB and is not recommended. The preferred method is to store related
data in a single array. If the data sets are of different types or sizes, use a
structure or cell array.

For example, create a cell array that contains 10 elements, where each
element is a numeric array:

numArrays = 10;
A = cell(numArrays,1);
for n = 1:numArrays

A{n} = magic(n);
end

Access the data in the cell array by indexing with curly braces. For example,
display the fifth element of A:

2-109

2 Program Components

A{5}

ans =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

The assignment statement A{n} = magic(n) is more elegant and efficient
than this call to eval:

eval(['A', int2str(n),' = magic(n)']) % Not recommended

For more information, see:

• “Create a Cell Array” on page 8-3

• “Create a Structure Array” on page 7-2

Files with Sequential Names
Related data files often have a common root name with an integer index, such
as myfile1.mat through myfileN.mat. A common (but not recommended) use
of the eval function is to construct and pass each file name to a function
using command syntax, such as

eval(['save myfile',int2str(n),'.mat']) % Not recommended

The best practice is to use function syntax, which allows you to pass variables
as inputs. For example:

currentFile = 'myfile1.mat';
save(currentFile)

You can construct file names within a loop using the sprintf function (which
is usually more efficient than int2str), and then call the save function
without eval. This code creates 10 files in the current folder:

numFiles = 10;
for n = 1:numFiles

randomData = rand(n);

2-110

String Evaluation

currentFile = sprintf('myfile%d.mat',n);
save(currentFile,'randomData')

end

For more information, see:

• “Command vs. Function Syntax” on page 1-13

• “Processing a Sequence of Files”

Function Names in Variables
A common use of eval is to execute a function when the name of the function
is in a variable string. There are two ways to evaluate functions from
variables that are more efficient than using eval:

• Create function handles with the @ symbol or with the str2func function.
For example, run a demo function from a list stored in a cell array:

demoFile = {@odedemo,@sunspots,@fitdemo};
n = input('Select a demo number (1, 2, or 3): ');
demoFile{n}()

• Use the feval function. For example, call a plot function (such as plot,
bar, or pie) with data that you specify at run time:

plotFunction = input('Specify a plotting function: ','s');
data = input('Enter data to plot: ');
feval(plotFunction,data)

Field Names in Variables
Access data in a structure with a variable field name by enclosing the
expression for the field in parentheses. For example:

myData.height = [67, 72, 58];
myData.weight = [140, 205, 90];

fieldName = input('Select data (height or weight): ','s');
dataToUse = myData.(fieldName);

2-111

2 Program Components

If you enter weight at the input prompt, then you can find the minimum
weight value with the following command.

min(dataToUse)

ans =
90

For an additional example, see “Generate Field Names from Variables” on
page 7-11.

Error Handling
The preferred method for error handling in MATLAB is to use a try/catch
statement. For example:

try
B = A;

catch exception
disp('A is undefined')

end

If your workspace does not contain variable A, then this code returns:

A is undefined

Previous versions of the documentation for the eval function include the
syntax eval(expression,catch_expr). If evaluating the expression input
returns an error, then eval evaluates catch_expr. However, an explicit
try/catch is significantly clearer than an implicit catch in an eval statement.
Using the implicit catch is not recommended.

2-112

Shell Escape Functions

Shell Escape Functions
It is sometimes useful to access your own C or Fortran programs using shell
escape functions. Shell escape functions use the shell escape command ! to
make external stand-alone programs act like new MATLAB functions. A
shell escape function

1 Saves the appropriate variables on disk.

2 Runs an external program (which reads the data file, processes the data,
and writes the results back out to disk).

3 Loads the processed file back into the workspace.

For example, look at the code for garfield.m, below. This function uses an
external function, gareqn, to find the solution to Garfield’s equation.

function y = garfield(a,b,q,r)
save gardata a b q r
!gareqn
load gardata

This file

1 Saves the input arguments a, b, q, and r to a MAT-file in the workspace
using the save command.

2 Uses the shell escape operator to access a C or Fortran program called
gareqn that uses the workspace variables to perform its computation.
gareqn writes its results to the gardata MAT-file.

3 Loads the gardata MAT-file described in “Custom Applications to Read
and Write MAT-Files” to obtain the results.

2-113

2 Program Components

Symbol Reference

In this section...

“Asterisk — *” on page 2-115

“At — @” on page 2-115

“Colon — :” on page 2-116

“Comma — ,” on page 2-117

“Curly Braces — { }” on page 2-118

“Dot — .” on page 2-118

“Dot-Dot — ..” on page 2-119

“Dot-Dot-Dot (Ellipsis) — ...” on page 2-119

“Dot-Parentheses — .()” on page 2-121

“Exclamation Point — !” on page 2-121

“Parentheses — ()” on page 2-121

“Percent — %” on page 2-122

“Percent-Brace — %{ %}” on page 2-123

“Plus — +” on page 2-123

“Semicolon — ;” on page 2-123

“Single Quotes — ’ ’” on page 2-124

“Space Character” on page 2-125

“Slash and Backslash — / \” on page 2-125

“Square Brackets — []” on page 2-126

“Tilde — ~” on page 2-126

This section does not include symbols used in arithmetic, relational, and
logical operations. For a description of these symbols, see the top of the
Alphabetical List of functions in the MATLAB Help browser.

2-114

Symbol Reference

Asterisk — *
An asterisk in a filename specification is used as a wildcard specifier, as
described below.

Filename Wildcard
Wildcards are generally used in file operations that act on multiple files
or folders. They usually appear in the string containing the file or folder
specification. MATLAB matches all characters in the name exactly except for
the wildcard character *, which can match any one or more characters.

To locate all files with names that start with 'january_' and have a mat
file extension, use

dir('january_*.mat')

You can also use wildcards with the who and whos functions. To get
information on all variables with names starting with 'image' and ending
with 'Offset', use

whos image*Offset

At — @
The @ sign signifies either a function handle constructor or a folder that
supports a MATLAB class.

Function Handle Constructor
The @ operator forms a handle to either the named function that follows the @
sign, or to the anonymous function that follows the @ sign.

Function Handles in General. Function handles are commonly used in
passing functions as arguments to other functions. Construct a function
handle by preceding the function name with an @ sign:

fhandle = @myfun

You can read more about function handles in Chapter 9, “Function Handles”.

2-115

2 Program Components

Handles to Anonymous Functions. Anonymous functions give you a quick
means of creating simple functions without having to create your function in
a file each time. You can construct an anonymous function and a handle to
that function using the syntax

fhandle = @(arglist) body

where body defines the body of the function and arglist is the list of
arguments you can pass to the function.

See “Anonymous Functions” on page 15-3 for more information.

Class Folder Designator
An @ sign can indicate the name of a class folder, such as

\@myclass\get.m

See the documentation on “Options for Class Folders” for more information.

Colon — :
The colon operator generates a sequence of numbers that you can use in
creating or indexing into arrays. See“Generating a Numeric Sequence” for
more information on using the colon operator.

Numeric Sequence Range
Generate a sequential series of regularly spaced numbers from first to last
using the syntax first:last. For an incremental sequence from 6 to 17, use

N = 6:17

Numeric Sequence Step
Generate a sequential series of numbers, each number separated by a step
value, using the syntax first:step:last. For a sequence from 2 through 38,
stepping by 4 between each entry, use

N = 2:4:38

2-116

Symbol Reference

Indexing Range Specifier
Index into multiple rows or columns of a matrix using the colon operator
to specify a range of indices:

B = A(7, 1:5); % Read columns 1-5 of row 7.
B = A(4:2:8, 1:5); % Read columns 1-5 of rows 4, 6, and 8.
B = A(:, 1:5); % Read columns 1-5 of all rows.

Conversion to Column Vector
Convert a matrix or array to a column vector using the colon operator as a
single index:

A = rand(3,4);
B = A(:);

Preserving Array Shape on Assignment
Using the colon operator on the left side of an assignment statement, you can
assign new values to array elements without changing the shape of the array:

A = rand(3,4);
A(:) = 1:12;

Comma — ,
A comma is used to separate the following types of elements.

Row Element Separator
When constructing an array, use a comma to separate elements that belong
in the same row:

A = [5.92, 8.13, 3.53]

Array Index Separator
When indexing into an array, use a comma to separate the indices into each
dimension:

2-117

2 Program Components

X = A(2, 7, 4)

Function Input and Output Separator
When calling a function, use a comma to separate output and input
arguments:

function [data, text] = xlsread(file, sheet, range, mode)

Command or Statement Separator
To enter more than one MATLAB command or statement on the same line,
separate each command or statement with a comma:

for k = 1:10, sum(A(k)), end

Curly Braces — { }
Use curly braces to construct or get the contents of cell arrays.

Cell Array Constructor
To construct a cell array, enclose all elements of the array in curly braces:

C = {[2.6 4.7 3.9], rand(8)*6, 'C. Coolidge'}

Cell Array Indexing
Index to a specific cell array element by enclosing all indices in curly braces:

A = C{4,7,2}

See the documentation on Cell Arrays for more information.

Dot — .
The single dot operator has the following different uses in MATLAB.

2-118

Symbol Reference

Decimal Point
MATLAB uses a period to separate the integral and fractional parts of a
number.

Structure Field Definition
Add fields to a MATLAB structure by following the structure name with a
dot and then a field name:

funds(5,2).bondtype = 'Corporate';

See the documentation on Chapter 7, “Structures” for more information.

Object Method Specifier
Specify the properties of an instance of a MATLAB class using the object
name followed by a dot, and then the property name:

val = asset.current_value

See Chapter 13, “Defining Your Own Classes” for more information.

Dot-Dot — ..
Two dots in sequence refer to the parent of the current folder.

Parent Folder
Specify the folder immediately above your current folder using two dots. For
example, to go up two levels in the folder tree and down into the test folder,
use

cd ..\..\test

Dot-Dot-Dot (Ellipsis) — ...
A series of three consecutive periods (...) is the line continuation operator in
MATLAB. This is often referred to as an ellipsis, but it should be noted that
the line continuation operator is a three-character operator and is different
from the single-character ellipsis represented in ASCII by the hexadecimal
number 2026.

2-119

2 Program Components

Line Continuation
Continue any MATLAB command or expression by placing an ellipsis at the
end of the line to be continued:

sprintf('The current value of %s is %d', ...
vname, value)

Entering Long Strings. You cannot use an ellipsis within single quotes
to continue a string to the next line:

string = 'This is not allowed and will generate an ...
error in MATLAB.'

To enter a string that extends beyond a single line, piece together shorter
strings using either the concatenation operator ([]) or the sprintf function.

Here are two examples:

quote1 = [
'Tiger, tiger, burning bright in the forests of the night,' ...
'what immortal hand or eye could frame thy fearful symmetry?'];

quote2 = sprintf('%s%s%s', ...
'In Xanadu did Kubla Khan a stately pleasure-dome decree,', ...
'where Alph, the sacred river, ran ', ...
'through caverns measureless to man down to a sunless sea.');

Defining Arrays. MATLAB interprets the ellipsis as a space character. For
statements that define arrays or cell arrays within [] or {} operators, a space
character separates array elements. For example,

not_valid = [1 2 zeros...
(1,3)]

is equivalent to

not_valid = [1 2 zeros (1,3)]

which returns an error. Place the ellipses so that the interpreted statement
is valid, such as

valid = [1 2 ...

2-120

Symbol Reference

zeros(1,3)]

Dot-Parentheses — .()
Use dot-parentheses to specify the name of a dynamic structure field.

Dynamic Structure Fields
Sometimes it is useful to reference structures with field names that can
vary. For example, the referenced field might be passed as an argument to a
function. Dynamic field names specify a variable name for a structure field.

The variable fundtype shown here is a dynamic field name:

type = funds(5,2).(fundtype);

See “Generate Field Names from Variables” on page 7-11 for more information.

Exclamation Point — !
The exclamation point precedes operating system commands that you want to
execute from within MATLAB.

Shell Escape
The exclamation point initiates a shell escape function. Such a function is to
be performed directly by the operating system:

!rmdir oldtests

See “Shell Escape Functions” on page 2-113 for more information.

Parentheses — ()
Parentheses are used mostly for indexing into elements of an array or for
specifying arguments passed to a called function. Parenthesis also control the
order of operations, and can group a vector visually (such as x = (1:10))
without calling a concatenation function.

2-121

2 Program Components

Array Indexing
When parentheses appear to the right of a variable name, they are indices
into the array stored in that variable:

A(2, 7, 4)

Function Input Arguments
When parentheses follow a function name in a function declaration or call, the
enclosed list contains input arguments used by the function:

function sendmail(to, subject, message, attachments)

Percent — %
The percent sign is most commonly used to indicate nonexecutable text within
the body of a program. This text is normally used to include comments in your
code. Two percent signs, %%, serve as a cell delimiter described in “Evaluate
Subsections of Files Using Code Cells”. Some functions also interpret the
percent sign as a conversion specifier.

Single Line Comments
Precede any one-line comments in your code with a percent sign. MATLAB
does not execute anything that follows a percent sign (that is, unless the
sign is quoted, '%'):

% The purpose of this routine is to compute
% the value of ...

See “Help Text” on page 14-13 for more information.

Conversion Specifiers
Some functions, like sscanf and sprintf, precede conversion specifiers with
the percent sign:

sprintf('%s = %d', name, value)

2-122

Symbol Reference

Percent-Brace — %{ %}
The %{ and %} symbols enclose a block of comments that extend beyond one
line.

Block Comments
Enclose any multiline comments with percent followed by an opening or
closing brace.

%{
The purpose of this routine is to compute
the value of ...
%}

Note With the exception of whitespace characters, the %{ and %} operators
must appear alone on the lines that immediately precede and follow the block
of help text. Do not include any other text on these lines.

Plus — +
The + sign appears most frequently as an arithmetic operator, but is also
used to designate the names of package folders. For more information, see
“Create a Namespace with Packages”.

Semicolon — ;
The semicolon can be used to construct arrays, suppress output from a
MATLAB command, or to separate commands entered on the same line.

Array Row Separator
When used within square brackets to create a new array or concatenate
existing arrays, the semicolon creates a new row in the array:

A = [5, 8; 3, 4]
A =

5 8
3 4

2-123

2 Program Components

Output Suppression
When placed at the end of a command, the semicolon tells MATLAB not to
display any output from that command. In this example, MATLAB does not
display the resulting 100-by-100 matrix:

A = ones(100, 100);

Command or Statement Separator
Like the comma operator, you can enter more than one MATLAB command
on a line by separating each command with a semicolon. MATLAB suppresses
output for those commands terminated with a semicolon, and displays the
output for commands terminated with a comma.

In this example, assignments to variables A and C are terminated with
a semicolon, and thus do not display. Because the assignment to B is
comma-terminated, the output of this one command is displayed:

A = 12.5; B = 42.7, C = 1.25;
B =

42.7000

Single Quotes — ’ ’
Single quotes are the constructor symbol for MATLAB character arrays.

Character and String Constructor
MATLAB constructs a character array from all characters enclosed in single
quotes. If only one character is in quotes, then MATLAB constructs a 1-by-1
array:

S = 'Hello World'

See Chapter 6, “Characters and Strings” for more information.

2-124

Symbol Reference

Space Character
The space character serves a purpose similar to the comma in that it can be
used to separate row elements in an array constructor, or the values returned
by a function.

Row Element Separator
You have the option of using either commas or spaces to delimit the row
elements of an array when constructing the array. To create a 1-by-3 array,
use

A = [5.92 8.13 3.53]
A =

5.9200 8.1300 3.5300

When indexing into an array, you must always use commas to reference each
dimension of the array.

Function Output Separator
Spaces are allowed when specifying a list of values to be returned by a
function. You can use spaces to separate return values in both function
declarations and function calls:

function [data text] = xlsread(file, sheet, range, mode)

Slash and Backslash — / \
The slash (/) and backslash (\) characters separate the elements of a path or
folder string. On Microsoft Windows-based systems, both slash and backslash
have the same effect. On The Open Group UNIX-based systems, you must
use slash only.

On a Windows system, you can use either backslash or slash:

dir([matlabroot '\toolbox\matlab\elmat\shiftdim.m'])
dir([matlabroot '/toolbox/matlab/elmat/shiftdim.m'])

On a UNIX system, use only the forward slash:

dir([matlabroot '/toolbox/matlab/elmat/shiftdim.m'])

2-125

2 Program Components

Square Brackets — []
Square brackets are used in array construction and concatenation, and also in
declaring and capturing values returned by a function.

Array Constructor
To construct a matrix or array, enclose all elements of the array in square
brackets:

A = [5.7, 9.8, 7.3; 9.2, 4.5, 6.4]

Concatenation
To combine two or more arrays into a new array through concatenation,
enclose all array elements in square brackets:

A = [B, eye(6), diag([0:2:10])]

Function Declarations and Calls
When declaring or calling a function that returns more than one output,
enclose each return value that you need in square brackets:

[data, text] = xlsread(file, sheet, range, mode)

Tilde — ~
The tilde character is used in comparing arrays for unequal values, finding
the logical NOT of an array, and as a placeholder for an input or output
argument you want to omit from a function call.

Not Equal to
To test for inequality values of elements in arrays a and b for inequality,
use a~=b:

a = primes(29); b = [2 4 6 7 11 13 20 22 23 29];
not_prime = b(a~=b)
not_prime =

2-126

Symbol Reference

4 6 20 22

Logical NOT
To find those elements of an array that are zero, use:

a = [35 42 0 18 0 0 0 16 34 0];
~a
ans =

0 0 1 0 1 1 1 0 0 1

Argument Placeholder
To have the fileparts function return its third output value and skip the
first two, replace arguments one and two with a tilde character:

[~, ~, filenameExt] = fileparts(fileSpec);

See “Ignore Function Outputs” on page 1-9 in the MATLAB Programming
documentation for more information.

2-127

2 Program Components

2-128

Classes (Data Types)

• Chapter 3, “Overview of MATLAB Classes”

• Chapter 4, “Numeric Classes”

• Chapter 5, “The Logical Class”

• Chapter 6, “Characters and Strings”

• Chapter 7, “Structures”

• Chapter 8, “Cell Arrays”

• Chapter 9, “Function Handles”

• Chapter 10, “Map Containers”

• Chapter 11, “Combining Unlike Classes”

• Chapter 12, “Using Objects”

• Chapter 13, “Defining Your Own Classes”

3

Overview of MATLAB
Classes

• “Fundamental MATLAB Classes” on page 3-2

• “How to Use the Different Classes” on page 3-4

3 Overview of MATLAB® Classes

Fundamental MATLAB Classes
There are many different data types, or classes, that you can work with in
the MATLAB software. You can build matrices and arrays of floating-point
and integer data, characters and strings, and logical true and false states.
Function handles connect your code with any MATLAB function regardless
of the current scope. Structures and cell arrays, provide a way to store
dissimilar types of data in the same array.

There are 15 fundamental classes in MATLAB. Each of these classes is in the
form of a matrix or array. With the exception of function handles, this matrix
or array is a minimum of 0-by-0 in size and can grow to an n-dimensional
array of any size. A function handle is always scalar (1-by-1).

All of the fundamental MATLAB classes are circled in the diagram below:

3-2

Fundamental MATLAB® Classes

Numeric classes in the MATLAB software include signed and unsigned
integers, and single- and double-precision floating-point numbers. By
default, MATLAB stores all numeric values as double-precision floating
point. (You cannot change the default type and precision.) You can choose
to store any number, or array of numbers, as integers or as single-precision.
Integer and single-precision arrays offer more memory-efficient storage than
double-precision.

All numeric types support basic array operations, such as subscripting,
reshaping, and mathematical operations.

You can create two-dimensional double and logical matrices using one of
two storage formats: full or sparse. For matrices with mostly zero-valued
elements, a sparse matrix requires a fraction of the storage space required
for an equivalent full matrix. Sparse matrices invoke methods especially
tailored to solve sparse problems

These classes require different amounts of storage, the smallest being a
logical value or 8–bit integer which requires only 1 byte. It is important to
keep this minimum size in mind if you work on data in files that were written
using a precision smaller than 8 bits.

3-3

3 Overview of MATLAB® Classes

How to Use the Different Classes
The following table describes these classes in more detail.

Class Name Documentation Intended Use

double, single Floating-Point
Numbers

• Required for fractional numeric data.

• Double and Single precision.

• Use realmin and realmax to show range of values.

• Two-dimensional arrays can be sparse.

• Default numeric type in MATLAB.

int8, uint8,
int16,
uint16,
int32,
uint32,
int64, uint64

Integers • Use for signed and unsigned whole numbers.

• More efficient use of memory.

• Use intmin and intmax to show range of values.

• Choose from 4 sizes (8, 16, 32, and 64 bits).

char Chapter 6,
“Characters and
Strings”

• Required for text.

• Native or unicode.

• Converts to/from numeric.

• Use with regular expressions.

• For multiple strings, use cell arrays.

logical Logical Class • Use in relational conditions or to test state.

• Can have one of two values: true or false.

• Also useful in array indexing.

• Two-dimensional arrays can be sparse.

3-4

How to Use the Different Classes

Class Name Documentation Intended Use

function_handle Chapter 9,
“Function
Handles”

• Pointer to a function.

• Enables passing a function to another function

• Can also call functions outside usual scope.

• Useful in Handle Graphics callbacks.

• Save to MAT-file and restore later.

struct Structures • Fields store arrays of varying classes and sizes.

• Access multiple fields/indices in single operation.

• Field names identify contents.

• Simple method of passing function arguments.

• Use in comma-separated lists for efficiency.

• More memory required for overhead

cell Cell Arrays • Cells store arrays of varying classes and sizes.

• Allows freedom to package data as you want.

• Manipulation of elements is similar to arrays.

• Simple method of passing function arguments.

• Use in comma-separated lists for efficiency.

• More memory required for overhead

3-5

3 Overview of MATLAB® Classes

3-6

4

Numeric Classes

• “Overview of Numeric Classes” on page 4-2

• “Integers” on page 4-3

• “Floating-Point Numbers” on page 4-7

• “Complex Numbers” on page 4-18

• “Infinity and NaN” on page 4-20

• “Identifying Numeric Classes” on page 4-22

• “Display Format for Numeric Values” on page 4-23

• “Function Summary” on page 4-26

4 Numeric Classes

Overview of Numeric Classes
Numeric classes in the MATLAB software include signed and unsigned
integers, and single- and double-precision floating-point numbers. By
default, MATLAB stores all numeric values as double-precision floating
point. (You cannot change the default type and precision.) You can choose
to store any number, or array of numbers, as integers or as single-precision.
Integer and single-precision arrays offer more memory-efficient storage than
double-precision.

All numeric types support basic array operations, such as subscripting,
reshaping, and mathematical operations.

4-2

Integers

Integers

In this section...

“Integer Classes” on page 4-3

“Creating Integer Data” on page 4-4

“Arithmetic Operations on Integer Classes” on page 4-5

“Largest and Smallest Values for Integer Classes” on page 4-6

“Integer Functions” on page 4-6

Integer Classes
MATLAB has four signed and four unsigned integer classes. Signed types
enable you to work with negative integers as well as positive, but cannot
represent as wide a range of numbers as the unsigned types because one bit
is used to designate a positive or negative sign for the number. Unsigned
types give you a wider range of numbers, but these numbers can only be
zero or positive.

MATLAB supports 1-, 2-, 4-, and 8-byte storage for integer data. You can
save memory and execution time for your programs if you use the smallest
integer type that accommodates your data. For example, you do not need a
32-bit integer to store the value 100.

Here are the eight integer classes, the range of values you can store with each
type, and the MATLAB conversion function required to create that type:

Class Range of Values Conversion Function

Signed 8-bit integer -27 to 27-1 int8

Signed 16-bit integer -215 to 215-1 int16

Signed 32-bit integer -231 to 231-1 int32

Signed 64-bit integer -263 to 263-1 int64

Unsigned 8-bit integer 0 to 28-1 uint8

Unsigned 16-bit integer 0 to 216-1 uint16

4-3

4 Numeric Classes

Class Range of Values Conversion Function

Unsigned 32-bit integer 0 to 232-1 uint32

Unsigned 64-bit integer 0 to 264-1 uint64

Creating Integer Data
MATLAB stores numeric data as double-precision floating point (double)
by default. To store data as an integer, you need to convert from double to
the desired integer type. Use one of the conversion functions shown in the
table above.

For example, to store 325 as a 16-bit signed integer assigned to variable x, type

x = int16(325);

If the number being converted to an integer has a fractional part, MATLAB
rounds to the nearest integer. If the fractional part is exactly 0.5, then from
the two equally nearby integers, MATLAB chooses the one for which the
absolute value is larger in magnitude:

x = 325.499; x = x + .001;

int16(x) int16(x)
ans = ans =

325 326

If you need to round a number using a rounding scheme other than the
default, MATLAB provides four rounding functions: round, fix, floor, and
ceil. The fix function enables you to override the default and round towards
zero when there is a nonzero fractional part:

x = 325.9;

int16(fix(x))
ans =

325

Arithmetic operations that involve both integers and floating-point always
result in an integer data type. MATLAB rounds the result, when necessary,

4-4

Integers

according to the default rounding algorithm. The example below yields an
exact answer of 1426.75 which MATLAB then rounds to the next highest
integer:

int16(325) * 4.39
ans =

1427

The integer conversion functions are also useful when converting other
classes, such as strings, to integers:

str = 'Hello World';

int8(str)
ans =

72 101 108 108 111 32 87 111 114 108 100

Arithmetic Operations on Integer Classes
MATLAB can perform integer arithmetic on the following types of data:

• Integers or integer arrays of the same integer data type. This yields a
result that has the same data type as the operands:

x = uint32([132 347 528]) .* uint32(75);
class(x)
ans =

uint32

• Integers or integer arrays and scalar double-precision floating-point
numbers. This yields a result that has the same data type as the integer
operands:

x = uint32([132 347 528]) .* 75.49;
class(x)
ans =

uint32

For all binary operations in which one operand is an array of integer data
type (except 64-bit integers) and the other is a scalar double, MATLAB
computes the operation using elementwise double-precision arithmetic, and
then converts the result back to the original integer data type. For binary

4-5

4 Numeric Classes

operations involving a 64-bit integer array and a scalar double, MATLAB
computes the operation as if 80-bit extended-precision arithmetic were used,
to prevent loss of precision.

For a list of the operations that support integer classes, see Nondouble Data
Type Support in the arithmetic operators reference page.

Largest and Smallest Values for Integer Classes
For each integer data type, there is a largest and smallest number that you
can represent with that type. The table shown under “Integers” on page 4-3
lists the largest and smallest values for each integer data type in the “Range
of Values” column.

You can also obtain these values with the intmax and intmin functions:

intmax('int8') intmin('int8')
ans = ans =

127 -128

If you convert a number that is larger than the maximum value of an integer
data type to that type, MATLAB sets it to the maximum value. Similarly, if
you convert a number that is smaller than the minimum value of the integer
data type, MATLAB sets it to the minimum value. For example,

x = int8(300) x = int8(-300)
x = x =

127 -128

Also, when the result of an arithmetic operation involving integers exceeds
the maximum (or minimum) value of the data type, MATLAB sets it to the
maximum (or minimum) value:

x = int8(100) * 3 x = int8(-100) * 3
x = x =

127 -128

Integer Functions
See Integer Functions on page 4-26 for a list of functions most commonly used
with integers in MATLAB.

4-6

Floating-Point Numbers

Floating-Point Numbers

In this section...

“Double-Precision Floating Point” on page 4-7

“Single-Precision Floating Point” on page 4-8

“Creating Floating-Point Data” on page 4-8

“Arithmetic Operations on Floating-Point Numbers” on page 4-10

“Largest and Smallest Values for Floating-Point Classes” on page 4-11

“Accuracy of Floating-Point Data” on page 4-12

“Avoiding Common Problems with Floating-Point Arithmetic” on page 4-14

“Floating-Point Functions” on page 4-16

“References” on page 4-16

MATLAB represents floating-point numbers in either double-precision or
single-precision format. The default is double precision, but you can make
any number single precision with a simple conversion function.

Double-Precision Floating Point
MATLAB constructs the double-precision (or double) data type according
to IEEE® Standard 754 for double precision. Any value stored as a double
requires 64 bits, formatted as shown in the table below:

Bits Usage

63 Sign (0 = positive, 1 = negative)

62 to 52 Exponent, biased by 1023

51 to 0 Fraction f of the number 1.f

4-7

4 Numeric Classes

Single-Precision Floating Point
MATLAB constructs the single-precision (or single) data type according
to IEEE Standard 754 for single precision. Any value stored as a single
requires 32 bits, formatted as shown in the table below:

Bits Usage

31 Sign (0 = positive, 1 = negative)

30 to 23 Exponent, biased by 127

22 to 0 Fraction f of the number 1.f

Because MATLAB stores numbers of type single using 32 bits, they require
less memory than numbers of type double, which use 64 bits. However,
because they are stored with fewer bits, numbers of type single are
represented to less precision than numbers of type double.

Creating Floating-Point Data
Use double-precision to store values greater than approximately 3.4 x 1038

or less than approximately -3.4 x 1038. For numbers that lie between these
two limits, you can use either double- or single-precision, but single requires
less memory.

Creating Double-Precision Data
Because the default numeric type for MATLAB is double, you can create a
double with a simple assignment statement:

x = 25.783;

The whos function shows that MATLAB has created a 1-by-1 array of type
double for the value you just stored in x:

whos x
Name Size Bytes Class

x 1x1 8 double

4-8

Floating-Point Numbers

Use isfloat if you just want to verify that x is a floating-point number. This
function returns logical 1 (true) if the input is a floating-point number, and
logical 0 (false) otherwise:

isfloat(x)
ans =

1

You can convert other numeric data, characters or strings, and logical data to
double precision using the MATLAB function, double. This example converts
a signed integer to double-precision floating point:

y = int64(-589324077574); % Create a 64-bit integer

x = double(y) % Convert to double
x =

-5.8932e+11

Creating Single-Precision Data
Because MATLAB stores numeric data as a double by default, you need to
use the single conversion function to create a single-precision number:

x = single(25.783);

The whos function returns the attributes of variable x in a structure. The
bytes field of this structure shows that when x is stored as a single, it requires
just 4 bytes compared with the 8 bytes to store it as a double:

xAttrib = whos('x');
xAttrib.bytes
ans =

4

You can convert other numeric data, characters or strings, and logical data to
single precision using the single function. This example converts a signed
integer to single-precision floating point:

y = int64(-589324077574); % Create a 64-bit integer

x = single(y) % Convert to single

4-9

4 Numeric Classes

x =
-5.8932e+11

Arithmetic Operations on Floating-Point Numbers
This section describes which classes you can use in arithmetic operations
with floating-point numbers.

Double-Precision Operations
You can perform basic arithmetic operations with double and any of the
following other classes. When one or more operands is an integer (scalar or
array), the double operand must be a scalar. The result is of type double,
except where noted otherwise:

• single — The result is of type single

• double

• int* or uint*— The result has the same data type as the integer operand

• char

• logical

This example performs arithmetic on data of types char and double. The
result is of type double:

c = 'uppercase' - 32;

class(c)
ans =

double

char(c)
ans =

UPPERCASE

Single-Precision Operations
You can perform basic arithmetic operations with single and any of the
following other classes. The result is always single:

4-10

Floating-Point Numbers

• single

• double

• char

• logical

In this example, 7.5 defaults to type double, and the result is of type single:

x = single([1.32 3.47 5.28]) .* 7.5;

class(x)
ans =

single

Largest and Smallest Values for Floating-Point
Classes
For the double and single classes, there is a largest and smallest number
that you can represent with that type.

Largest and Smallest Double-Precision Values
The MATLAB functions realmax and realmin return the maximum and
minimum values that you can represent with the double data type:

str = 'The range for double is:\n\t%g to %g and\n\t %g to %g';
sprintf(str, -realmax, -realmin, realmin, realmax)

ans =
The range for double is:

-1.79769e+308 to -2.22507e-308 and
2.22507e-308 to 1.79769e+308

Numbers larger than realmax or smaller than -realmax are assigned the
values of positive and negative infinity, respectively:

realmax + .0001e+308
ans =

Inf

-realmax - .0001e+308

4-11

4 Numeric Classes

ans =
-Inf

Largest and Smallest Single-Precision Values
The MATLAB functions realmax and realmin, when called with the
argument 'single', return the maximum and minimum values that you can
represent with the single data type:

str = 'The range for single is:\n\t%g to %g and\n\t %g to %g';
sprintf(str, -realmax('single'), -realmin('single'), ...

realmin('single'), realmax('single'))

ans =
The range for single is:
-3.40282e+38 to -1.17549e-38 and
1.17549e-38 to 3.40282e+38

Numbers larger than realmax(’single’) or smaller than -realmax (’single’) are
assigned the values of positive and negative infinity, respectively:

realmax('single') + .0001e+038
ans =

Inf

-realmax('single') - .0001e+038
ans =

-Inf

Accuracy of Floating-Point Data
If the result of a floating-point arithmetic computation is not as precise as
you had expected, it is likely caused by the limitations of your computer’s
hardware. Probably, your result was a little less exact because the hardware
had insufficient bits to represent the result with perfect accuracy; therefore, it
truncated the resulting value.

4-12

Floating-Point Numbers

Double-Precision Accuracy
Because there are only a finite number of double-precision numbers, you
cannot represent all numbers in double-precision storage. On any computer,
there is a small gap between each double-precision number and the next larger
double-precision number. You can determine the size of this gap, which limits
the precision of your results, using the eps function. For example, to find the
distance between 5 and the next larger double-precision number, enter

format long

eps(5)
ans =

8.881784197001252e-16

This tells you that there are no double-precision numbers between 5 and
5 + eps(5). If a double-precision computation returns the answer 5, the
result is only accurate to within eps(5).

The value of eps(x) depends on x. This example shows that, as x gets larger,
so does eps(x):

eps(50)
ans =

7.105427357601002e-15

If you enter eps with no input argument, MATLAB returns the value of
eps(1), the distance from 1 to the next larger double-precision number.

Single-Precision Accuracy
Similarly, there are gaps between any two single-precision numbers. If x
has type single, eps(x) returns the distance between x and the next larger
single-precision number. For example,

x = single(5);
eps(x)

returns

ans =
4.7684e-07

4-13

4 Numeric Classes

Note that this result is larger than eps(5). Because there are fewer
single-precision numbers than double-precision numbers, the gaps
between the single-precision numbers are larger than the gaps between
double-precision numbers. This means that results in single-precision
arithmetic are less precise than in double-precision arithmetic.

For a number x of type double, eps(single(x)) gives you an upper bound
for the amount that x is rounded when you convert it from double to single.
For example, when you convert the double-precision number 3.14 to single,
it is rounded by

double(single(3.14) - 3.14)
ans =

1.0490e-07

The amount that 3.14 is rounded is less than

eps(single(3.14))
ans =

2.3842e-07

Avoiding Common Problems with Floating-Point
Arithmetic
Almost all operations in MATLAB are performed in double-precision
arithmetic conforming to the IEEE standard 754. Because computers only
represent numbers to a finite precision (double precision calls for 52 mantissa
bits), computations sometimes yield mathematically nonintuitive results. It is
important to note that these results are not bugs in MATLAB.

Use the following examples to help you identify these cases:

Example 1 — Round-Off or What You Get Is Not What You
Expect
The decimal number 4/3 is not exactly representable as a binary fraction. For
this reason, the following calculation does not give zero, but rather reveals
the quantity eps.

e = 1 - 3*(4/3 - 1)

4-14

Floating-Point Numbers

e =
2.2204e-16

Similarly, 0.1 is not exactly representable as a binary number. Thus, you get
the following nonintuitive behavior:

a = 0.0;
for i = 1:10

a = a + 0.1;
end
a == 1

ans =
0

Note that the order of operations can matter in the computation:

b = 1e-16 + 1 - 1e-16;
c = 1e-16 - 1e-16 + 1;
b == c

ans =
0

There are gaps between floating-point numbers. As the numbers get larger,
so do the gaps, as evidenced by:

(2^53 + 1) - 2^53

ans =
0

Since pi is not really pi, it is not surprising that sin(pi) is not exactly zero:

sin(pi)

ans =
1.224646799147353e-16

4-15

4 Numeric Classes

Example 2 — Catastrophic Cancellation
When subtractions are performed with nearly equal operands, sometimes
cancellation can occur unexpectedly. The following is an example of a
cancellation caused by swamping (loss of precision that makes the addition
insignificant).

sqrt(1e-16 + 1) - 1

ans =
0

Some functions in MATLAB, such as expm1 and log1p, may be used to
compensate for the effects of catastrophic cancellation.

Example 3 — Floating-Point Operations and Linear Algebra
Round-off, cancellation, and other traits of floating-point arithmetic combine
to produce startling computations when solving the problems of linear
algebra. MATLAB warns that the following matrix A is ill-conditioned, and
therefore the system Ax = b may be sensitive to small perturbations:

A = diag([2 eps]);
b = [2; eps];
y = A\b;
Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.110223e-16.

These are only a few of the examples showing how IEEE floating-point
arithmetic affects computations in MATLAB. Note that all computations
performed in IEEE 754 arithmetic are affected, this includes applications
written in C or FORTRAN, as well as MATLAB.

Floating-Point Functions
See Floating-Point Functions on page 4-27 for a list of functions most
commonly used with floating-point numbers in MATLAB.

References
The following references provide more information about floating-point
arithmetic.

4-16

Floating-Point Numbers

[1] Moler, Cleve, “Floating Points,” MATLAB News and Notes, Fall,
1996. A PDF version is available on the MathWorks Web site at
http://www.mathworks.com/company/newsletters/news_notes/pdf/Fall96Cleve.pdf

[2] Moler, Cleve, Numerical Computing with MATLAB, S.I.A.M.
A PDF version is available on the MathWorks Web site at
http://www.mathworks.com/moler/.

4-17

4 Numeric Classes

Complex Numbers

In this section...

“Creating Complex Numbers” on page 4-18

“Complex Number Functions” on page 4-19

Creating Complex Numbers
Complex numbers consist of two separate parts: a real part and an imaginary
part. The basic imaginary unit is equal to the square root of -1. This is
represented in MATLAB by either of two letters: i or j.

The following statement shows one way of creating a complex value in
MATLAB. The variable x is assigned a complex number with a real part of 2
and an imaginary part of 3:

x = 2 + 3i;

Another way to create a complex number is using the complex function. This
function combines two numeric inputs into a complex output, making the first
input real and the second imaginary:

x = rand(3) * 5;
y = rand(3) * -8;

z = complex(x, y)
z =

4.7842 -1.0921i 0.8648 -1.5931i 1.2616 -2.2753i
2.6130 -0.0941i 4.8987 -2.3898i 4.3787 -3.7538i
4.4007 -7.1512i 1.3572 -5.2915i 3.6865 -0.5182i

You can separate a complex number into its real and imaginary parts using
the real and imag functions:

zr = real(z)
zr =

4.7842 0.8648 1.2616
2.6130 4.8987 4.3787
4.4007 1.3572 3.6865

4-18

Complex Numbers

zi = imag(z)
zi =

-1.0921 -1.5931 -2.2753
-0.0941 -2.3898 -3.7538
-7.1512 -5.2915 -0.5182

Complex Number Functions
See Complex Number Functions on page 4-27 for a list of functions most
commonly used with MATLAB complex numbers in MATLAB.

4-19

4 Numeric Classes

Infinity and NaN

In this section...

“Infinity” on page 4-20

“NaN” on page 4-20

“Infinity and NaN Functions” on page 4-21

Infinity
MATLAB represents infinity by the special value inf. Infinity results from
operations like division by zero and overflow, which lead to results too large
to represent as conventional floating-point values. MATLAB also provides
a function called inf that returns the IEEE arithmetic representation for
positive infinity as a double scalar value.

Several examples of statements that return positive or negative infinity in
MATLAB are shown here.

x = 1/0
x =
Inf

x = 1.e1000
x =

Inf

x = exp(1000)
x =

Inf

x = log(0)
x =

-Inf

Use the isinf function to verify that x is positive or negative infinity:

x = log(0);

isinf(x)
ans =

1

NaN
MATLAB represents values that are not real or complex numbers with a
special value called NaN, which stands for Not a Number. Expressions like 0/0
and inf/inf result in NaN, as do any arithmetic operations involving a NaN:

4-20

Infinity and NaN

x = 0/0
x =

NaN

Use the isnan function to verify that the real part of x is NaN:

isnan(x)
ans =

1

MATLAB also provides a function called NaN that returns the IEEE arithmetic
representation for NaN as a double scalar value:

x = NaN;

whos x
Name Size Bytes Class

x 1x1 8 double

Logical Operations on NaN
Because two NaNs are not equal to each other, logical operations involving NaN
always return false, except for a test for inequality, (NaN ~= NaN):

NaN > NaN
ans =

0

NaN ~= NaN
ans =

1

Infinity and NaN Functions
See Infinity and NaN Functions on page 4-28 for a list of functions most
commonly used with inf and NaN in MATLAB.

4-21

4 Numeric Classes

Identifying Numeric Classes
You can check the data type of a variable x using any of these commands.

Command Operation

whos x Display the data type of x.

xType = class(x); Assign the data type of x to a variable.

isnumeric(x) Determine if x is a numeric type.

isa(x, 'integer')
isa(x, 'uint64')
isa(x, 'float')
isa(x, 'double')
isa(x, 'single')

Determine if x is the specified numeric type.
(Examples for any integer, unsigned 64-bit integer,
any floating point, double precision, and single
precision are shown here).

isreal(x) Determine if x is real or complex.

isnan(x) Determine if x is Not a Number (NaN).

isinf(x) Determine if x is infinite.

isfinite(x) Determine if x is finite.

4-22

Display Format for Numeric Values

Display Format for Numeric Values

In this section...

“Default Display” on page 4-23

“Display Format Examples” on page 4-23

“Setting Numeric Format in a Program” on page 4-24

Default Display
By default, MATLAB displays numeric output as 5-digit scaled, fixed-point
values. You can change the way numeric values are displayed to any of the
following:

• 5-digit scaled fixed point, floating point, or the best of the two

• 15-digit scaled fixed point, floating point, or the best of the two

• A ratio of small integers

• Hexadecimal (base 16)

• Bank notation

All available formats are listed on the format reference page.

To change the numeric display setting, use either the format function or
the Preferences dialog box (accessible from the MATLAB File menu). The
format function changes the display of numeric values for the duration of a
single MATLAB session, while your Preferences settings remain active from
one session to the next. These settings affect only how numbers are displayed,
not how MATLAB computes or saves them.

Display Format Examples
Here are a few examples of the various formats and the output produced from
the following two-element vector x, with components of different magnitudes.

Check the current format setting:

get(0, 'format')

4-23

4 Numeric Classes

ans =
short

Set the value for x and display in 5-digit scaled fixed point:

x = [4/3 1.2345e-6]
x =

1.3333 0.0000

Set the format to 5-digit floating point:

format short e
x
x =

1.3333e+00 1.2345e-06

Set the format to 15-digit scaled fixed point:

format long
x
x =

1.333333333333333 0.000001234500000

Set the format to 'rational' for small integer ratio output:

format rational
x
x =

4/3 1/810045

Set an integer value for x and display it in hexadecimal (base 16) format:

format hex
x = uint32(876543210)
x =

343efcea

Setting Numeric Format in a Program
To temporarily change the numeric format inside a program, get the original
format using the get function and save it in a variable. When you finish

4-24

Display Format for Numeric Values

working with the new format, you can restore the original format setting
using the set function as shown here:

origFormat = get(0, 'format');
format('rational');

-- Work in rational format --

set(0,'format', origFormat);

4-25

4 Numeric Classes

Function Summary
MATLAB provides these functions for working with numeric classes:

• Integer Functions on page 4-26

• Floating-Point Functions on page 4-27

• Complex Number Functions on page 4-27

• Infinity and NaN Functions on page 4-28

• Class Identification Functions on page 4-28

• Output Formatting Functions on page 4-28

Integer Functions

Function Description

int8, int16,
int32, int64

Convert to signed 1-, 2-, 4-, or 8-byte integer.

uint8, uint16,
uint32, uint64

Convert to unsigned 1-, 2-, 4-, or 8-byte integer.

ceil Round towards plus infinity to nearest integer

class Return the data type of an object.

fix Round towards zero to nearest integer

floor Round towards minus infinity to nearest integer

isa Determine if input value has the specified data type.

isinteger Determine if input value is an integer array.

isnumeric Determine if input value is a numeric array.

round Round towards the nearest integer

4-26

Function Summary

Floating-Point Functions

Function Description

double Convert to double precision.

single Convert to single precision.

class Return the data type of an object.

isa Determine if input value has the specified data type.

isfloat Determine if input value is a floating-point array.

isnumeric Determine if input value is a numeric array.

eps Return the floating-point relative accuracy. This value
is the tolerance MATLAB uses in its calculations.

realmax Return the largest floating-point number your computer
can represent.

realmin Return the smallest floating-point number your
computer can represent.

Complex Number Functions

Function Description

complex Construct complex data from real and imaginary
components.

i or j Return the imaginary unit used in constructing complex
data.

real Return the real part of a complex number.

imag Return the imaginary part of a complex number.

isreal Determine if a number is real or imaginary.

4-27

4 Numeric Classes

Infinity and NaN Functions

Function Description

inf Return the IEEE value for infinity.

isnan Detect NaN elements of an array.

isinf Detect infinite elements of an array.

isfinite Detect finite elements of an array.

nan Return the IEEE value for Not a Number.

Class Identification Functions

Function Description

class Return data type (or class).

isa Determine if input value is of the specified data type.

isfloat Determine if input value is a floating-point array.

isinteger Determine if input value is an integer array.

isnumeric Determine if input value is a numeric array.

isreal Determine if input value is real.

whos Display the data type of input.

Output Formatting Functions

Function Description

format Control display format for output.

4-28

5

The Logical Class

• “Overview of the Logical Class” on page 5-2

• “Identifying Logical Arrays” on page 5-4

• “Functions that Return a Logical Result” on page 5-6

• “Using Logical Arrays in Conditional Statements” on page 5-9

• “Using Logical Arrays in Indexing” on page 5-10

5 The Logical Class

Overview of the Logical Class
The logical data type represents a logical true or false state using the
numbers 1 and 0, respectively. Certain MATLAB functions and operators
return logical true or false to indicate whether a certain condition was
found to be true or not. For example, the statement 50>40 returns a logical
true value.

Logical data does not have to be scalar; MATLAB supports arrays of logical
values as well. For example, the following statement returns a vector of
logicals indicating false for the first two elements and true for the last three:

[30 40 50 60 70] > 40
ans =

0 0 1 1 1

This statement returns a 4-by-4 array of logical values:

x = magic(4) >= 9
x =

1 0 0 1
0 1 1 0
1 0 0 1
0 1 1 0

The MATLAB functions that have names beginning with is (e.g., ischar,
issparse) also return a logical value or array:

a = [2.5 6.7 9.2 inf 4.8];

isfinite(a)
ans =

1 1 1 0 1

Logical arrays can also be sparse as long as they have no more than two
dimensions:

x = sparse(magic(20) > 395)
x =

(1,1) 1
(1,4) 1

5-2

Overview of the Logical Class

(1,5) 1
(20,18) 1
(20,19) 1

5-3

5 The Logical Class

Identifying Logical Arrays

In this section...

“Function Summary” on page 5-4

“Examples of Identifying Logical Arrays” on page 5-4

Function Summary
This table shows the commands you can use to determine whether or not an
array x is logical. The last function listed, cellfun, operates on cell arrays,
which you can read about in the section on cell arrays.

Command Operation

whos(x) Display value and data type for x.

islogical(x) Return true if array is logical.

isa(x, 'logical') Return true if array is logical.

class(x) Return string with data type name.

cellfun('islogical', x) Check each cell array element for logical.

Examples of Identifying Logical Arrays
Create a 3-by-6 array of logicals and use the whos function to identify the size,
byte count, and class (i.e., data type) of the array.

% Initialize the state of the random number generator.
rand('state',0);
A = rand(3,6) > .5
A =

1 0 0 0 1 0
0 1 0 1 1 1
1 1 1 1 0 1

whos A
Name Size Bytes Class Attributes

A 3x6 18 logical

5-4

Identifying Logical Arrays

Find the class of each of these expressions:

B = logical(-2.8); C = false; D = 50>40; E = isinteger(4.9);

whos B C D E
Name Size Bytes Class Attributes

B 1x1 1 logical
C 1x1 1 logical
D 1x1 1 logical
E 1x1 1 logical

Display the class of A:

% Initialize the state of the random number generator.
rand('state',0);
A = rand(3,6) > .5

fprintf('A is a %s\n', class(A))
A is a logical

Create cell array C and use islogical to identify the logical elements:

C = {1, 0, true, false, pi, A};
cellfun('islogical', C)
ans =

0 0 1 1 0 1

5-5

5 The Logical Class

Functions that Return a Logical Result

In this section...

“Overview” on page 5-6

“Examples of Functions that Return a Logical Result” on page 5-6

Overview
This table shows some of the MATLAB operations that return a logical true
or false. Most mathematics operations are not supported on logical values.

Function Operation

true, false Setting value to true or false

logical Numeric to logical conversion

& (and), | (or), ~ (not), xor, any, all Logical operations

&&, || Short-circuit AND and OR

== (eq), ~= (ne), < (lt), > (gt), <= (le),
>= (ge)

Relational operations

All is* functions, cellfun Test operations

strcmp, strncmp, strcmpi, strncmpi String comparisons

Examples of Functions that Return a Logical Result
MATLAB functions that test the state of a variable or expression return
a logical result:

A = isstrprop('abc123def', 'alpha')
A =

1 1 1 0 0 0 1 1 1

Logical functions such as xor return a logical result:

xor([1 0 'ab' 2.4], [0 0 'ab', 0])
ans =

1 0 0 1

5-6

../ref/is.html

Functions that Return a Logical Result

Note however that the bitwise operators do not return a logical:

X = bitxor(3, 12);
whos X

Name Size Bytes Class Attributes

X 1x1 8 double

String comparison functions also return a logical:

S = 'D:\matlab\mfiles\test19.m';
strncmp(S, 'D:\matlab', 9)
ans =

1

Note the difference between the elementwise and short-circuit logical
operators. Short-circuit operators, such as && and ||, test only as much of the
input expression as necessary. In the second part of this example, it makes
no difference that B is undefined because the state of A alone determines
that the expression is false:

A = 0;
A & B
??? Undefined function or variable 'B'.

A && B
ans =

0

One way of implementing an infinite loop is to use the while function along
with the logical constant true:

while true
a = []; b = [];
a = input('Enter username: ', 's');

if ~isempty(a)
b = input('Enter password: ', 's');
end

if ~isempty(b)

5-7

5 The Logical Class

disp 'Attempting to log in to account ...'
break
end

end

5-8

Using Logical Arrays in Conditional Statements

Using Logical Arrays in Conditional Statements
Conditional statements are useful when you want to execute a block of code
only when a certain condition is met. For example, the sprintf command
shown below is valid only if str is a nonempty string:

str = input('Enter input string: ', 's');
if ~isempty(str) && ischar(str)

sprintf('Input string is ''%s''', str)
end

Now run the code:

Enter input string: Hello
ans =

Input string is 'Hello'

5-9

5 The Logical Class

Using Logical Arrays in Indexing
A logical matrix provides a different type of array indexing in MATLAB.
While most indices are numeric, indicating a certain row or column number,
logical indices are positional. That is, it is the position of each 1 in the logical
matrix that determines which array element is being referred to.

See “Using Logicals in Array Indexing” for more information on this subject.

5-10

6

Characters and Strings

• “Creating Character Arrays” on page 6-2

• “Cell Arrays of Strings” on page 6-7

• “Formatting Strings” on page 6-10

• “String Comparisons” on page 6-25

• “Searching and Replacing” on page 6-28

• “Converting from Numeric to String” on page 6-30

• “Converting from String to Numeric” on page 6-32

• “Function Summary” on page 6-35

6 Characters and Strings

Creating Character Arrays

In this section...

“Creating a Character String” on page 6-2

“Creating a Rectangular Character Array” on page 6-3

“Identifying Characters in a String” on page 6-4

“Working with Space Characters” on page 6-5

“Expanding Character Arrays” on page 6-6

Creating a Character String
Create a string by enclosing a sequence of letters in single quotation marks.
MATLAB represents the five-character string shown below as a 1-by-5 vector
of class char. It occupies 2 bytes of memory for each character in the string:

str = 'Hello';

whos str
Name Size Bytes Class Attributes

str 1x5 10 char

Functions such as uint16 convert characters to their numeric codes:

str_numeric = uint16(str)

str_numeric =
72 101 108 108 111

The char function converts the integer vector back to characters:

str_alpha = char([72 101 108 108 111])

str_alpha =
Hello

6-2

Creating Character Arrays

Creating a Rectangular Character Array
You can join two or more strings together to create a new character array.
This is called concatenation and is explained for numeric arrays in the
section “Concatenating Matrices”. As with numeric arrays, you can combine
character arrays vertically or horizontally to create a new character array.

Alternatively, combine strings into a cell array. Cell arrays are flexible
containers that allow you to easily combine strings of varying length.

Combining Strings Vertically
To combine strings into a two-dimensional character array, use either of these
methods:

• Apply the MATLAB concatenation operator, []. Separate each row with a
semicolon (;). Each row must contain the same number of characters. For
example, combine three strings of equal length:

dev_title = ['Thomas R. Lee'; ...
'Sr. Developer'; ...
'SFTware Corp.'];

If the strings have different lengths, pad with space characters as needed.
For example:

mgr_title = ['Harold A. Jorgensen '; ...
'Assistant Project Manager'; ...
'SFTware Corp. '];

• Call the char function. If the strings are different length, char pads the
shorter strings with trailing blanks so that each row has the same number
of characters. For example, combine three strings of different lengths:

mgr_title = char('Harold A. Jorgensen', ...
'Assistant Project Manager', 'SFTware Corp.');

The char function creates a 3-by-25 character array mgr_title.

Combining Strings Horizontally
To combine strings into a single row vector, use either of these methods:

6-3

../ref/specialcharacters.html

6 Characters and Strings

• Apply the MATLAB concatenation operator, []. Separate the input strings
with a comma or a space. This method preserves any trailing spaces in the
input arrays. For example, combine several strings:

name = 'Thomas R. Lee';
title = 'Sr. Developer';
company = 'SFTware Corp.';

full_name = [name ', ' title ', ' company]

MATLAB returns

full_name =
Thomas R. Lee, Sr. Developer, SFTware Corp.

• Call the string concatenation function, strcat. This method removes
trailing spaces in the inputs. For example, combine strings to create a
hypothetical email address:

name = 'myname ';
domain = 'mydomain ';
ext = 'com ';

address = strcat(name, '@', domain, '.', ext)

MATLAB returns

address =
myname@mydomain.com

Identifying Characters in a String
Use any of the following functions to identify a character or string, or certain
characters in a string:

Function Description

ischar Determine whether the input is a character array.

isletter Find all alphabetic letters in the input string.

isspace Find all space characters in the input string.

isstrprop Find all characters of a specific category.

6-4

../ref/specialcharacters.html

Creating Character Arrays

str = 'Find the space characters in this string';
% | | | | | |
% 5 9 15 26 29 34

find(isspace(str))
ans =

5 9 15 26 29 34

Working with Space Characters
The blanks function creates a string of space characters. The following
example creates a string of 15 space characters:

s = blanks(15)
s =

To make the example more useful, append a '|' character to the beginning
and end of the blank string so that you can see the output:

['|' s '|'] % Make result visible.
ans =

| |

Insert a few nonspace characters in the middle of the blank string:

s(6:10) = 'AAAAA';

['|' s '|'] % Make result visible.
ans =

| AAAAA |

You can justify the positioning of these characters to the left or right using
the strjust function:

sLeft = strjust(s, 'left');

['|' sLeft '|'] % Make result visible.
ans =

|AAAAA |

sRight = strjust(s, 'right');

6-5

6 Characters and Strings

['|' sRight '|'] % Make result visible.
ans =

| AAAAA|

Remove all trailing space characters with deblank:

sDeblank = deblank(s);

['|' sDeblank '|'] % Make result visible.
ans =

| AAAAA|

Remove all leading and trailing spaces with strtrim:

sTrim = strtrim(s);

['|' sTrim '|'] % Make result visible.
ans =

|AAAAA|

Expanding Character Arrays
Generally, MathWorks® does not recommend expanding the size of an existing
character array by assigning additional characters to indices beyond the
bounds of the array such that part of the array becomes padded with zeros.

6-6

Cell Arrays of Strings

Cell Arrays of Strings

In this section...

“Converting to a Cell Array of Strings” on page 6-7

“Functions for Cell Arrays of Strings” on page 6-8

Converting to a Cell Array of Strings
Creating strings in a regular MATLAB array requires that all strings in the
array be of the same length. This often means that you have to pad blanks at
the end of strings to equalize their length. However, another type of MATLAB
array, the cell array, can hold different sizes and types of data in an array
without padding. Cell arrays provide a more flexible way to store strings of
varying length.

The cellstr function converts a character array into a cell array of strings.
Consider this character array:

data = ['Allison Jones';'Development ';'Phoenix '];

Each row of the matrix is padded so that all have equal length (in this case,
13 characters).

Now use cellstr to create a column vector of cells, each cell containing one
of the strings from the data array:

celldata = cellstr(data)
celldata =

'Allison Jones'
'Development'
'Phoenix'

Note that the cellstr function strips off the blanks that pad the rows of the
input string matrix:

length(celldata{3})
ans =

7

6-7

6 Characters and Strings

The iscellstr function determines if the input argument is a cell array of
strings. It returns a logical 1 (true) in the case of celldata:

iscellstr(celldata)
ans =

1

Use char to convert back to a standard padded character array:

strings = char(celldata)
strings =

Allison Jones
Development
Phoenix

length(strings(3,:))
ans =

13

For more information on cell arrays, see “Access Data in a Cell Array” on
page 8-5.

Functions for Cell Arrays of Strings
This table describes the MATLAB functions for working with cell arrays.

Function Description

cellstr Convert a character array to a cell array of strings.

char Convert a cell array of strings to a character array.

deblank Remove trailing blanks from a string.

iscellstr Return true for a cell array of strings.

sort Sort elements in ascending or descending order.

strcat Concatenate strings.

strcmp Compare strings.

You can also use the following set functions with cell arrays of strings.

6-8

Cell Arrays of Strings

Function Description

intersect Set the intersection of two vectors.

ismember Detect members of a set.

setdiff Return the set difference of two vectors.

setxor Set the exclusive OR of two vectors.

union Set the union of two vectors.

unique Set the unique elements of a vector.

6-9

6 Characters and Strings

Formatting Strings

In this section...

“Functions that Use Format Strings” on page 6-10

“The Format String” on page 6-11

“Input Value Arguments” on page 6-12

“The Formatting Operator” on page 6-13

“Constructing the Formatting Operator” on page 6-14

“Setting Field Width and Precision” on page 6-20

“Restrictions for Using Identifiers” on page 6-23

Functions that Use Format Strings
The following MATLAB functions offer the capability to compose a string that
includes ordinary text and data formatted to your specification:

• sprintf — Write formatted data to an output string

• fprintf—Write formatted data to an output file or the Command Window

• warning— Display formatted data in a warning message

• error— Display formatted data in an error message and abort

• assert— Generate an error when a condition is violated

• MException — Capture error information

The syntax of each of these functions includes formatting operators similar
to those used by the printf function in the C programming language. For
example, %s tells MATLAB to interpret an input value as a string, and %d
means to format an integer using decimal notation.

The general formatting syntax for these functions is

functionname(..., format_string, value1, value2, ..., valueN)

6-10

Formatting Strings

where the format_string argument expresses the basic content and
formatting of the final output string, and the value arguments that follow
supply data values to be inserted into the string.

Here is a sample sprintf statement, also showing the resulting output string:

sprintf('The price of %s on %d/%d/%d was $%.2f.', ...
'bread', 7, 1, 2006, 2.49)

ans =
The price of bread on 7/1/2006 was $2.49.

Note The examples in this section of the documentation use only the sprintf
function to demonstrate how string formatting works. However, you can run
the examples using the fprintf, warning, and error functions as well.

The Format String
The first input argument in the sprintf statement shown above is the
format_string:

'The price of %s on %d/%d/%d was $%.2f.'

This argument can include ordinary text, formatting operators and, in some
cases, special characters. The formatting operators for this particular string
are: %s, %d, %d, %d, and %.2f.

Following the format_string argument are five additional input arguments,
one for each of the formatting operators in the string:

'bread', 7, 1, 2006, 2.49

When MATLAB processes the format string, it replaces each operator with
one of these input values.

Special Characters
Special characters are a part of the text in the string. But, because they
cannot be entered as ordinary text, they require a unique character sequence
to represent them. Use any of the following character sequences to insert
special characters into the output string.

6-11

6 Characters and Strings

To Insert a . . . Use . . .

Single quotation mark ''

Percent character %%

Backslash \\

Alarm \a

Backspace \b

Form feed \f

New line \n

Carriage return \r

Horizontal tab \t

Vertical tab \v

Hexadecimal number, N \xN

Octal number, N \N

Input Value Arguments
In the syntax

functionname(..., format_string, value1, value2, ..., valueN)

The value arguments must immediately follow format_string in the
argument list. In most instances, you supply one of these value arguments
for each formatting operator used in the format_string. Scalars, vectors,
and numeric and character arrays are valid value arguments. You cannot
use cell arrays or structures.

If you include fewer formatting operators than there are values to insert,
MATLAB reuses the operators on the additional values. This example shows
two formatting operators and six values to insert into the string:

sprintf('%s = %d\n', 'A', 479, 'B', 352, 'C', 651)
ans =

A = 479
B = 352
C = 651

6-12

Formatting Strings

You can also specify multiple value arguments as a vector or matrix. The
format_string needs one %s operator for the entire matrix or vector:

mvec = [77 65 84 76 65 66];

sprintf('%s ', char(mvec))
ans =

MATLAB

Sequential and Numbered Argument Specification

You can place value arguments in the argument list either sequentially (that
is, in the same order in which their formatting operators appear in the string),
or by identifier (adding a number to each operator that identifies which value
argument to replace it with). By default, MATLAB uses sequential ordering.

To specify arguments by a numeric identifier, add a positive integer followed
by a $ sign immediately after the % sign in the operator. Numbered argument
specification is explained in more detail under the topic “Value Identifiers”
on page 6-20.

Ordered Sequentially Ordered By Identifier

sprintf('%s %s %s', ...
'1st', '2nd', '3rd')

ans =
1st 2nd 3rd

sprintf('%3$s %2$s %1$s', ...
'1st', '2nd', '3rd')

ans =
3rd 2nd 1st

The Formatting Operator
Formatting operators tell MATLAB how to format the numeric or character
value arguments and where to insert them into the string. These operators
control the notation, alignment, significant digits, field width, and other
aspects of the output string.

A formatting operator begins with a % character, which may be followed by a
series of one or more numbers, characters, or symbols, each playing a role in
further defining the format of the insertion value. The final entry in this series
is a single conversion character that MATLAB uses to define the notation

6-13

6 Characters and Strings

style for the inserted data. Conversion characters used in MATLAB are based
on those used by the printf function in the C programming language.

Here is a simple example showing five formatting variations for a common
value:

A = pi*100*ones(1,5);

sprintf(' %f \n %.2f \n %+.2f \n %12.2f \n %012.2f \n', A)
ans =

314.159265 % Display in fixed-point notation (%f)
314.16 % Display 2 decimal digits (%.2f)
+314.16 % Display + for positive numbers (%+.2f)

314.16 % Set width to 12 characters (%12.2f)
000000314.16 % Replace leading spaces with 0 (%012.2f)

Constructing the Formatting Operator
The fields that make up a formatting operator in MATLAB are as shown here,
in the order they appear from right to left in the operator. The rightmost field,
the conversion character, is required; the five to the left of that are optional.
Each of these fields is explained in a section below:

• Conversion Character — Specifies the notation of the output.

• Subtype — Further specifies any nonstandard types.

• Precision — Sets the number of digits to display to the right of the decimal
point, or the number of significant digits to display.

• Field Width — Sets the minimum number of digits to display.

• Flags — Controls the alignment, padding, and inclusion of plus or minus
signs.

• Value Identifiers — Map formatting operators to value input arguments.
Use the identifier field when value arguments are not in a sequential order
in the argument list.

Here is an example of a formatting operator that uses all six fields. (Space
characters are not allowed in the operator. They are shown here only to
improve readability of the figure).

6-14

Formatting Strings

���������	�
����

������������������������������

�����
 ��������������!����

"��#$�

An alternate syntax, that enables you to supply values for the field width and
precision fields from values in the argument list, is shown below. See the
section “Specifying Field Width and Precision Outside the format String” on
page 6-21 for information on when and how to use this syntax. (Again, space
characters are shown only to improve readability of the figure.)

Each field of the formatting operator is described in the following sections.
These fields are covered as they appear going from right to left in the
formatting operator, starting with the Conversion Character and ending
with the Identifier field.

Conversion Character
The conversion character specifies the notation of the output. It consists of
a single character and appears last in the format specifier. It is the only
required field of the format specifier other than the leading % character.

Specifier Description

c Single character

d Decimal notation (signed)

e Exponential notation (using a lowercase e as in 3.1415e+00)

E Exponential notation (using an uppercase E as in 3.1415E+00)

f Fixed-point notation

6-15

6 Characters and Strings

Specifier Description

g The more compact of %e or %f. (Insignificant zeros do not
print.)

G Same as %g, but using an uppercase E

o Octal notation (unsigned)

s String of characters

u Decimal notation (unsigned)

x Hexadecimal notation (using lowercase letters a–f)

X Hexadecimal notation (using uppercase letters A–F)

This example uses conversion characters to display the number 46 in decimal,
fixed-point, exponential, and hexadecimal formats:

A = 46*ones(1,4);

sprintf('%d %f %e %X', A)
ans =
46 46.000000 4.600000e+01 2E

Subtype
The subtype field is a single alphabetic character that immediately precedes
the conversion character. The following nonstandard subtype specifiers are
supported for the conversion characters %o, %x, %X, and %u.

b The underlying C data type is a double rather than an unsigned
integer. For example, to print a double-precision value in
hexadecimal, use a format like '%bx'.

t The underlying C data type is a float rather than an unsigned integer.

To specify the number of bits for the conversion of an integer value
(corresponding to conversion characters %d, %i, %u, %o, %x, or %X), use one of
the following subtypes.

6-16

Formatting Strings

l 64-bit value.

h 16-bit value.

Precision
precision in a formatting operator is a nonnegative integer that immediately
follows a period. For example, the specifier %7.3f, has a precision of 3.
For the %g specifier, precision indicates the number of significant digits to
display. For the %f, %e, and %E specifiers, precision indicates how many
digits to display to the right of the decimal point.

Here are some examples of how the precision field affects different types
of notation:

sprintf('%g %.2g %f %.2f', pi*50*ones(1,4))
ans =
157.08 1.6e+02 157.079633 157.08

Precision is not usually used in format specifiers for strings (i.e., %s). If you
do use it on a string and if the value p in the precision field is less than the
number of characters in the string, MATLAB displays only p characters of the
string and truncates the rest.

You can also supply the value for a precision field from outside of the format
specifier. See the section “Specifying Field Width and Precision Outside the
format String” on page 6-21 for more information on this.

For more information on the use of precision in formatting, see “Setting
Field Width and Precision” on page 6-20.

Field Width
Field width in a formatting operator is a nonnegative integer that tells
MATLAB the minimum number of digits or characters to use when formatting
the corresponding input value. For example, the specifier %7.3f, has a width
of 7.

Here are some examples of how the width field affects different types of
notation:

6-17

6 Characters and Strings

sprintf('|%e|%15e|%f|%15f|', pi*50*ones(1,4))
ans =
|1.570796e+02| 1.570796e+02|157.079633| 157.079633|

When used on a string, the field width can determine whether MATLAB
pads the string with spaces. If width is less than or equal to the number of
characters in the string, it has no effect.

sprintf('%30s', 'Pad left with spaces')
ans =

Pad left with spaces

You can also supply a value for field width from outside of the format
specifier. See the section “Specifying Field Width and Precision Outside the
format String” on page 6-21 for more information on this.

For more information on the use of field width in formatting, see “Setting
Field Width and Precision” on page 6-20.

Flags
You can control the output using any of these optional flags:

Character Description Example

A minus sign (-) Left-justifies the
converted argument
in its field.

%-5.2d

A plus sign (+) Always prints a sign
character (+ or –).

%+5.2d

A space () Inserts a space before the
value.

% 5.2f

6-18

Formatting Strings

Character Description Example

Zero (0) Pads with zeros rather
than spaces.

%05.2f

A pound sign (#) Modifies selected numeric
conversions:

• For %o, %x, or %X, print
0, 0x, or 0X prefix.

• For %f, %e, or %E, print
decimal point even
when precision is 0.

• For %g or %G, do not
remove trailing zeros
or decimal point.

%#5.0f

Right- and left-justify the output. The default is to right-justify:

sprintf('right-justify: %12.2f\nleft-justify: %-12.2f', ...
12.3, 12.3)

ans =
right-justify: 12.30
left-justify: 12.30

Display a + sign for positive numbers. The default is to omit the + sign:

sprintf('no sign: %12.2f\nsign: %+12.2f', ...
12.3, 12.3)

ans =
no sign: 12.30
sign: +12.30

Pad to the left with spaces or zeros. The default is to use space-padding:

sprintf('space-padded: %12.2f\nzero-padded: %012.2f', ...
5.2, 5.2)

ans =
space-padded: 5.20

6-19

6 Characters and Strings

zero-padded: 000000005.20

Note You can specify more than one flag in a formatting operator.

Value Identifiers
By default, MATLAB inserts data values from the argument list into the
string in a sequential order. If you have a need to use the value arguments
in a nonsequential order, you can override the default by using a numeric
identifier in each format specifier. Specify nonsequential arguments with an
integer immediately following the % sign, followed by a $ sign.

Ordered Sequentially Ordered By Identifier

sprintf('%s %s %s', ...
'1st', '2nd', '3rd')

ans =
1st 2nd 3rd

sprintf('%3$s %2$s %1$s', ...
'1st', '2nd', '3rd')

ans =
3rd 2nd 1st

Setting Field Width and Precision
This section provides further information on the use of the field width and
precision fields of the formatting operator:

• “Effect on the Output String” on page 6-20

• “Specifying Field Width and Precision Outside the format String” on page
6-21

• “Using Identifiers In the Width and Precision Fields” on page 6-22

Effect on the Output String
The figure below illustrates the way in which the field width and precision
settings affect the output of the string formatting functions. In this figure,
the zero following the % sign in the formatting operator means to add leading
zeros to the output string rather than space characters:

6-20

Formatting Strings

�	�
%�&'(��)
�� ���	�
%�'

��*�����$���������$�
���������������������

�����������$���������$�
��������������������

������!����+�!�,�)
$��������+���$�,�� �����������$����������

������������$�������
�����������������

���-����$������

.���������!�������/
���0��������������
���������!����1����

General rules for formatting

• If precision is not specified, it defaults to 6.

• If precision (p) is less than the number of digits in the fractional part of the
input value (f), then only p digits are shown to the right of the decimal
point in the output, and that fractional value is rounded.

• If precision (p) is greater than the number of digits in the fractional part of
the input value (f), then p digits are shown to the right of the decimal point
in the output, and the fractional part is extended to the right with p-f zeros.

• If field width is not specified, it defaults to precision + 1 + the number of
digits in the whole part of the input value.

• If field width (w) is greater than p+1 plus the number of digits in the whole
part of the input value (n), then the whole part of the output value is
extended to the left with w-(n+1+p) space characters or zeros, depending
on whether or not the zero flag is set in the Flags field. The default is to
extend the whole part of the output with space characters.

Specifying Field Width and Precision Outside the format String
To specify field width or precision using values from a sequential argument
list, use an asterisk (*) in place of the field width or precision field of the
formatting operator.

6-21

6 Characters and Strings

This example formats and displays three numbers. The formatting operator
for the first, %*f, has an asterisk in the field width location of the formatting
operator, specifying that just the field width, 15, is to be taken from the
argument list. The second operator, %.*f puts the asterisk after the decimal
point meaning, that it is the precision that is to take its value from the
argument list. And the third operator, %*.*f, specifies both field width and
precision in the argument list:

sprintf('%*f %.*f %*.*f', ...
15, 123.45678, ... % Width for 123.45678 is 15
3, 16.42837, ... % Precision for rand*20 is .3
6, 4, pi) % Width & Precision for pi is 6.4

ans =
123.456780 16.428 3.1416

You can mix the two styles. For example, this statement gets the field width
from the argument list and the precision from the format string:

sprintf('%*.2f', 5, 123.45678)
ans =

123.46

Using Identifiers In the Width and Precision Fields
You can also derive field width and precision values from a nonsequential
(i.e., numbered) argument list. Inside the formatting operator, specify field
width and/or precision with an asterisk followed by an identifier number,
followed by a $ sign.

This example from the previous section shows how to obtain field width and
precision from a sequential argument list:

sprintf('%*f %.*f %*.*f', ...
15, 123.45678, ...
3, 16.42837, ...
6, 4, pi)

ans =
123.456780 16.428 3.1416

6-22

Formatting Strings

Here is an example of how to do the same thing using numbered ordering.
Field width for the first output value is 15, precision for the second value is
3, and field width and precision for the third value is 6 and 4, respectively.
If you specify field width or precision with identifiers, then you must specify
the value with an identifier as well:

sprintf('%1$*4$f %2$.*5$f %3$*6$.*7$f', ...
123.45678, 16.42837, pi, 15, 3, 6, 4)

ans =
123.456780 16.428 3.1416

Restrictions for Using Identifiers
If any of the formatting operators in a string include an identifier field, then
all of the operators in that string must do the same; you cannot use both
sequential and nonsequential ordering in the same function call.

Valid Syntax Invalid Syntax

sprintf('%d %d %d %d', ...
1, 2, 3, 4)

ans =
1 2 3 4

sprintf('%d %3$d %d %d', ...
1, 2, 3, 4)

ans =
1

If your command provides more value arguments than there are formatting
operators in the format string, MATLAB reuses the operators. However,
MATLAB allows this only for commands that use sequential ordering.
You cannot reuse formatting operators when making a function call with
numbered ordering of the value arguments.

Valid Syntax Invalid Syntax

sprintf('%d', 1, 2, 3, 4)
ans =

1234

sprintf('%1$d', 1, 2, 3, 4)
ans =

1

Also, do not use identifiers when the value arguments are in the form of a
vector or array:

6-23

6 Characters and Strings

Valid Syntax Invalid Syntax

v = [1.4 2.7 3.1];

sprintf('%.4f %.4f %.4f', v)
ans =

1.4000 2.7000 3.1000

v = [1.4 2.7 3.1];

sprintf('%3$.4f %1$.4f %2$.4f', v)
ans =

Empty string: 1-by-0

6-24

String Comparisons

String Comparisons
There are several ways to compare strings and substrings:

• You can compare two strings, or parts of two strings, for equality.

• You can compare individual characters in two strings for equality.

• You can categorize every element within a string, determining whether
each element is a character or white space.

These functions work for both character arrays and cell arrays of strings.

Comparing Strings for Equality
You can use any of four functions to determine if two input strings are
identical:

• strcmp determines if two strings are identical.

• strncmp determines if the first n characters of two strings are identical.

• strcmpi and strncmpi are the same as strcmp and strncmp, except that
they ignore case.

Consider the two strings

str1 = 'hello';
str2 = 'help';

Strings str1 and str2 are not identical, so invoking strcmp returns logical 0
(false). For example,

C = strcmp(str1,str2)
C =

0

Note For C programmers, this is an important difference between the
MATLAB strcmp and C strcmp() functions, where the latter returns 0 if
the two strings are the same.

6-25

6 Characters and Strings

The first three characters of str1 and str2 are identical, so invoking strncmp
with any value up to 3 returns 1:

C = strncmp(str1, str2, 2)
C =

1

These functions work cell-by-cell on a cell array of strings. Consider the two
cell arrays of strings

A = {'pizza'; 'chips'; 'candy'};
B = {'pizza'; 'chocolate'; 'pretzels'};

Now apply the string comparison functions:

strcmp(A,B)
ans =

1
0
0

strncmp(A,B,1)
ans =

1
1
0

Comparing for Equality Using Operators
You can use MATLAB relational operators on character arrays, as long as
the arrays you are comparing have equal dimensions, or one is a scalar. For
example, you can use the equality operator (==) to determine where the
matching characters are in two strings:

A = 'fate';
B = 'cake';

A == B
ans =

0 1 0 1

All of the relational operators (>, >=, <, <=, ==, ~=) compare the values of
corresponding characters.

6-26

../ref/relationaloperators.html

String Comparisons

Categorizing Characters Within a String
There are three functions for categorizing characters inside a string:

1 isletter determines if a character is a letter.

2 isspace determines if a character is white space (blank, tab, or new line).

3 isstrprop checks characters in a string to see if they match a category
you specify, such as

• Alphabetic

• Alphanumeric

• Lowercase or uppercase

• Decimal digits

• Hexadecimal digits

• Control characters

• Graphic characters

• Punctuation characters

• Whitespace characters

For example, create a string named mystring:

mystring = 'Room 401';

isletter examines each character in the string, producing an output vector
of the same length as mystring:

A = isletter(mystring)
A =

1 1 1 1 0 0 0 0

The first four elements in A are logical 1 (true) because the first four
characters of mystring are letters.

6-27

6 Characters and Strings

Searching and Replacing
MATLAB provides several functions for searching and replacing characters in
a string. (MATLAB also supports search and replace operations using regular
expressions. See Regular Expressions.)

Consider a string named label:

label = 'Sample 1, 10/28/95';

The strrep function performs the standard search-and-replace operation.
Use strrep to change the date from '10/28' to '10/30':

newlabel = strrep(label, '28', '30')
newlabel =

Sample 1, 10/30/95

strfind returns the starting position of a substring within a longer string. To
find all occurrences of the string 'amp' inside label, use

position = strfind(label, 'amp')
position =

2

The position within label where the only occurrence of 'amp' begins is the
second character.

The textscan function parses a string to identify numbers or substrings.
Describe each component of the string with conversion specifiers, such as
%s for strings, %d for integers, or %f for floating-point numbers. Optionally,
include any literal text to ignore.

For example, identify the sample number and date string from label:

parts = textscan(label, 'Sample %d, %s');
parts{:}

ans =
1

ans =
'10/28/95'

6-28

Searching and Replacing

To parse strings in a cell array, use the strtok function. For example:

c = {'all in good time'; ...
'my dog has fleas'; ...
'leave no stone unturned'};

first_words = strtok(c)

6-29

6 Characters and Strings

Converting from Numeric to String

In this section...

“Function Summary” on page 6-30

“Converting to a Character Equivalent” on page 6-31

“Converting to a String of Numbers” on page 6-31

“Converting to a Specific Radix” on page 6-31

Function Summary
The functions listed in this table provide a number of ways to convert numeric
data to character strings.

Function Description Example

char Convert a positive integer to an equivalent
character. (Truncates any fractional parts.)

[72 105] → 'Hi'

int2str Convert a positive or negative integer to a
character type. (Rounds any fractional parts.)

[72 105]→ '72 105'

num2str Convert a numeric type to a character type of the
specified precision and format.

[72 105] →
'72/105/' (format
set to %1d/)

mat2str Convert a numeric type to a character type of the
specified precision, returning a string MATLAB
can evaluate.

[72 105] → '[72
105]'

dec2hex Convert a positive integer to a character type of
hexadecimal base.

[72 105]→ '48 69'

dec2bin Convert a positive integer to a character type of
binary base.

[72 105]→ '1001000
1101001'

dec2base Convert a positive integer to a character type of
any base from 2 through 36.

[72 105] → '110
151' (base set to 8)

6-30

Converting from Numeric to String

Converting to a Character Equivalent
The char function converts integers to Unicode® character codes and returns
a string composed of the equivalent characters:

x = [77 65 84 76 65 66];
char(x)
ans =

MATLAB

Converting to a String of Numbers
The int2str, num2str, and mat2str functions convert numeric values to
strings where each character represents a separate digit of the input value.
The int2str and num2str functions are often useful for labeling plots. For
example, the following lines use num2str to prepare automated labels for the
x-axis of a plot:

function plotlabel(x, y)
plot(x, y)
str1 = num2str(min(x));
str2 = num2str(max(x));
out = ['Value of f from ' str1 ' to ' str2];
xlabel(out);

Converting to a Specific Radix
Another class of conversion functions changes numeric values into strings
representing a decimal value in another base, such as binary or hexadecimal
representation. This includes dec2hex, dec2bin, and dec2base.

6-31

6 Characters and Strings

Converting from String to Numeric

In this section...

“Function Summary” on page 6-32

“Converting from a Character Equivalent” on page 6-33

“Converting from a Numeric String” on page 6-33

“Converting from a Specific Radix” on page 6-34

Function Summary
The functions listed in this table provide a number of ways to convert
character strings to numeric data.

Function Description Example

uintN (e.g., uint8) Convert a character to an integer code that
represents that character.

'Hi' → 72 105

str2num Convert a character type to a numeric type. '72 105'→ [72 105]

str2double Similar to str2num, but offers better
performance and works with cell arrays of
strings.

{'72' '105'} → [72
105]

hex2num Convert a numeric type to a character type
of specified precision, returning a string that
MATLAB can evaluate.

'A' →
'-1.4917e-154'

hex2dec Convert a character type of hexadecimal base
to a positive integer.

'A' → 10

bin2dec Convert a positive integer to a character type
of binary base.

'1010' → 10

base2dec Convert a positive integer to a character type
of any base from 2 through 36.

'12' → 10 (if base ==
8)

6-32

Converting from String to Numeric

Converting from a Character Equivalent
Character arrays store each character as a 16-bit numeric value. Use one of
the integer conversion functions (e.g., uint8) or the double function to convert
strings to their numeric values, and char to revert to character representation:

name = 'Thomas R. Lee';

name = double(name)
name =

84 104 111 109 97 115 32 82 46 32 76 101 101

name = char(name)
name =

Thomas R. Lee

Converting from a Numeric String
Use str2num to convert a character array to the numeric value represented by
that string:

str = '37.294e-1';

val = str2num(str)
val =

3.7294

The str2double function converts a cell array of strings to the
double-precision values represented by the strings:

c = {'37.294e-1'; '-58.375'; '13.796'};

d = str2double(c)
d =

3.7294
-58.3750
13.7960

whos
Name Size Bytes Class

c 3x1 224 cell

6-33

6 Characters and Strings

d 3x1 24 double

Converting from a Specific Radix
To convert from a character representation of a nondecimal number to the
value of that number, use one of these functions: hex2num, hex2dec, bin2dec,
or base2dec.

The hex2num and hex2dec functions both take hexadecimal (base 16) inputs,
but hex2num returns the IEEE double-precision floating-point number it
represents, while hex2dec converts to a decimal integer.

6-34

Function Summary

Function Summary
MATLAB provides these functions for working with character arrays:

• Functions to Create Character Arrays on page 6-35

• Functions to Modify Character Arrays on page 6-35

• Functions to Read and Operate on Character Arrays on page 6-36

• Functions to Search or Compare Character Arrays on page 6-36

• Functions to Determine Class or Content on page 6-36

• Functions to Convert Between Numeric and String Classes on page 6-37

• Functions to Work with Cell Arrays of Strings as Sets on page 6-37

Functions to Create Character Arrays

Function Description

'str' Create the string specified between quotes.

blanks Create a string of blanks.

sprintf Write formatted data to a string.

strcat Concatenate strings.

char Concatenate strings vertically.

Functions to Modify Character Arrays

Function Description

deblank Remove trailing blanks.

lower Make all letters lowercase.

sort Sort elements in ascending or descending order.

strjust Justify a string.

strrep Replace one string with another.

strtrim Remove leading and trailing white space.

upper Make all letters uppercase.

6-35

6 Characters and Strings

Functions to Read and Operate on Character Arrays

Function Description

eval Execute a string with MATLAB expression.

sscanf Read a string under format control.

Functions to Search or Compare Character Arrays

Function Description

regexp Match regular expression.

strcmp Compare strings.

strcmpi Compare strings, ignoring case.

strfind Find one string within another.

strncmp Compare the first N characters of strings.

strncmpi Compare the first N characters, ignoring case.

strtok Find a token in a string.

textscan Read data from a string.

Functions to Determine Class or Content

Function Description

iscellstr Return true for a cell array of strings.

ischar Return true for a character array.

isletter Return true for letters of the alphabet.

isstrprop Determine if a string is of the specified category.

isspace Return true for white-space characters.

6-36

Function Summary

Functions to Convert Between Numeric and String Classes

Function Description

char Convert to a character or string.

cellstr Convert a character array to a cell array of strings.

double Convert a string to numeric codes.

int2str Convert an integer to a string.

mat2str Convert a matrix to a string you can run eval on.

num2str Convert a number to a string.

str2num Convert a string to a number.

str2double Convert a string to a double-precision value.

Functions to Work with Cell Arrays of Strings as Sets

Function Description

intersect Set the intersection of two vectors.

ismember Detect members of a set.

setdiff Return the set difference of two vectors.

setxor Set the exclusive OR of two vectors.

union Set the union of two vectors.

unique Set the unique elements of a vector.

6-37

6 Characters and Strings

6-38

7

Structures

• “Create a Structure Array” on page 7-2

• “Access Data in a Structure Array” on page 7-6

• “Concatenate Structures” on page 7-9

• “Generate Field Names from Variables” on page 7-11

• “Access Data in Nested Structures” on page 7-12

• “Access Multiple Elements of a Nonscalar Struct Array” on page 7-14

• “Ways to Organize Data in Structure Arrays” on page 7-16

• “Memory Requirements for a Structure Array” on page 7-20

7 Structures

Create a Structure Array
This example shows how to create a structure array. A structure is a data
type that groups related data using data containers called fields. Each field
can contain data of any type or size.

Store a patient record in a scalar structure with fields name, billing, and
test.

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79, 75, 73; 180, 178, 177.5; 220, 210, 205];
patient

patient =

name: 'John Doe'
billing: 127

test: [3x3 double]

Add records for other patients to the array by including subscripts after the
array name.

7-2

Create a Structure Array

patient(2).name = 'Ann Lane';
patient(2).billing = 28.50;
patient(2).test = [68, 70, 68; 118, 118, 119; 172, 170, 169];
patient

patient =

1x2 struct array with fields:
name
billing
test

Each patient record in the array is a structure of class struct. An array of
structures is often referred to as a struct array. Like other MATLAB arrays, a
struct array can have any dimensions.

A struct array has the following properties:

• All structs in the array have the same number of fields.

• All structs have the same field names.

7-3

7 Structures

• Fields of the same name in different structs can contain different types
or sizes of data.

Any unspecified fields for new structs in the array contain empty arrays.

patient(3).name = 'New Name';
patient(3)

ans =

name: 'New Name'
billing: []

test: []

Access data in the structure array to find how much the first patient owes,
and to create a bar graph of his test results.

amount_due = patient(1).billing
bar(patient(1).test)
title(['Test Results for ', patient(1).name])

amount_due =

127

7-4

Create a Structure Array

7-5

7 Structures

Access Data in a Structure Array
This example shows how to access the contents of a structure array. To
run the code in this example, load several variables into a scalar (1-by-1)
structure named S.

S = load('clown.mat')

The variables from the file (X, caption, and map) are now fields in the struct.

S =
X: [200x320 double]

map: [81x3 double]
caption: [2x1 char]

Access the data using dot notation of the form structName.fieldName. For
example, pass the numeric data in field X to the image function:

image(S.X)
colormap(S.map)

To access part of a field, add indices as appropriate for the size and type of data
in the field. For example, pass the upper left corner of X to the image function:

upperLeft = S.X(1:50,1:80);
image(upperLeft);

7-6

Access Data in a Structure Array

If a particular field contains a cell array, use curly braces to access the data,
such as S.cellField{1:50,1:80}.

Data in Nonscalar Structure Arrays

Create a nonscalar array by loading data from the file mandrill.mat into
a second element of array S:

S(2) = load('mandrill.mat')

Each element of a structure array must have the same fields. Both clown.mat
and mandrill.mat contain variables X, map, and caption.

S is a 1-by-2 array.

S =
1x2 struct array with fields:

X
map
caption

For nonscalar structures, the syntax for accessing a particular field is
structName(indices).fieldName. Redisplay the clown image, specifying the
index for the clown struct (1):

7-7

7 Structures

image(S(1).X)
colormap(S(1).map)

Add indices to select and redisplay the upper left corner of the field contents:

upperLeft = S(1).X(1:50,1:80);
image(upperLeft)

Note You can index into part of a field only when you refer to a single
element of a structure array. MATLAB does not support statements such
as S(1:2).X(1:50,1:80), which attempt to index into a field for multiple
elements of the structure.

Related Information

• “Access Data in Nested Structures” on page 7-12

• “Access Multiple Elements of a Nonscalar Struct Array” on page 7-14

7-8

Concatenate Structures

Concatenate Structures
This example shows how to concatenate structure arrays using the []
operator. To concatenate structures, they must have the same set of fields,
but the fields do not need to contain the same sizes or types of data.

Create scalar (1-by-1) structure arrays struct1 and struct2, each with fields
a and b:

struct1.a = 'first';
struct1.b = [1,2,3];

struct2.a = 'second';
struct2.b = rand(5);

Just as concatenating two scalar values such as [1, 2] creates a 1-by-2
numeric array, concatenating struct1 and struct2,

combined = [struct1, struct2]

creates a 1-by-2 structure array:

combined =
1x2 struct array with fields:

a
b

When you want to access the contents of a particular field, specify the index of
the structure in the array. For example, access field a of the first structure:

combined(1).a

This code returns

ans =
first

Concatenation also applies to nonscalar structure arrays. For example, create
a 2-by-2 structure array named new:

new(1,1).a = 1; new(1,1).b = 10;
new(1,2).a = 2; new(1,2).b = 20;

7-9

7 Structures

new(2,1).a = 3; new(2,1).b = 30;
new(2,2).a = 4; new(2,2).b = 40;

Because the 1-by-2 structure combined and the 2-by-2 structure new both have
two columns, you can concatenate them vertically with a semicolon separator:

larger = [combined; new]

This code returns a 3-by-2 structure array,

larger =
3x2 struct array with fields:

a
b

where, for example,

larger(2,1).a =
1

For related information, see:

• “Creating and Concatenating Matrices”

• “Access Data in a Structure Array” on page 7-6

• “Access Multiple Elements of a Nonscalar Struct Array” on page 7-14

7-10

Generate Field Names from Variables

Generate Field Names from Variables
This example shows how to derive a field name at run time from a variable
or expression. The general syntax is

structName.(dynamicExpression)

where dynamicExpression is a variable or expression that returns a character
or string. Field names that you reference with expressions are called dynamic
field names.

For example, create a field name from the current date:

currentDate = datestr(now,'mmmdd');
myStruct.(currentDate) = [1,2,3]

If the current date reported by your system is February 29, then this code
assigns data to a field named Feb29:

myStruct =
Feb29: [1 2 3]

Field names, like variable names, must begin with a letter, can contain
letters, digits, or underscore characters, and are case sensitive. To avoid
potential conflicts, do not use the names of existing variables or functions as
field names. For more information, see “Variable Names” on page 1-10.

7-11

7 Structures

Access Data in Nested Structures
This example shows how to index into a structure that is nested within
another structure. The general syntax is

structName(indices).nestedStructName.(indices).fieldName(indices)

When a structure is scalar (1-by-1), you do not need to include the indices to
refer to the single element. For example, create a scalar structure s, where
field n is a nested scalar structure with fields a, b, and c:

s.n.a = ones(3);
s.n.b = eye(4);
s.n.c = magic(5);

Access the third row of field b:

third_row_b = s.n.b(3,:)

Variable third_row_b contains the third row of eye(4).

third_row_b =
0 0 1 0

Expand s so that both s and n are nonscalar (1-by-2):

s(1).n(2).a = 2 * ones(3);
s(1).n(2).b = 2 * eye(4);
s(1).n(2).c = 2 * magic(5);

s(2).n(1).a = '1a'; s(2).n(2).a = '2a';
s(2).n(1).b = '1b'; s(2).n(2).b = '2b';
s(2).n(1).c = '1c'; s(2).n(2).c = '2c';

Structure s now contains the data shown in the following figure.

7-12

Access Data in Nested Structures

s(1)

.n(1) .a 1 1 1
1 1 1
1 1 1

.b 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.c 17 24 1 8 15
23 5 7 14 16
 4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

.n(2) 2 2 2
2 2 2
2 2 2

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

34 48 2 16 30
46 10 14 28 32
 8 12 26 40 44
20 24 38 42 6
22 36 50 4 18

s(2)

.n(1) .a 1a

.b

.c

.n(2)

1b

1c

2a

2b

2c

.a

.b

.c

.a

.b

.c

Access part of the array in field b of the second element in n within the first
element of s:

part_two_eye = s(1).n(2).b(1:2,1:2)

This returns the 2-by-2 upper left corner of 2 * eye(4):

part_two_eye =
2 0
0 2

7-13

7 Structures

Access Multiple Elements of a Nonscalar Struct Array
This example shows how to access and process data from multiple elements of
a nonscalar structure array:

Create a 1-by-3 structure s with field f:

s(1).f = 1;
s(2).f = 'two';
s(3).f = 3 * ones(3);

Although each structure in the array must have the same number of fields
and the same field names, the contents of the fields can be different types and
sizes. When you refer to field f for multiple elements of the structure array,
such as

s(1:3).f

or

s.f

MATLAB returns the data from the elements in a comma-separated list,
which displays as follows:

ans =
1

ans =
two

ans =
3 3 3
3 3 3
3 3 3

You cannot assign the list to a single variable with the syntax v = s.f
because the fields can contain different types of data. However, you can
assign the list items to the same number of variables, such as

[v1, v2, v3] = s.f;

7-14

Access Multiple Elements of a Nonscalar Struct Array

or assign to elements of a cell array, such as

c = {s.f};

If all of the fields contain the same type of data and can form a hyperrectangle,
you can concatenate the list items. For example, create a structure nums with
scalar numeric values in field f, and concatenate the data from the fields:

nums(1).f = 1;
nums(2).f = 2;
nums(3).f = 3;

allNums = [nums.f]

This code returns

allNums =
1 2 3

If you want to process each element of an array with the same operation, use
the arrayfun function. For example, count the number of elements in field
f of each struct in array s:

numElements = arrayfun(@(x) numel(x.f), s)

The syntax @(x) creates an anonymous function. This code calls the numel
function for each element of array s, such as numel(s(1).f), and returns

numElements =
1 3 9

For related information, see:

• “Comma-Separated Lists” on page 2-100

• “Anonymous Functions” on page 15-3

7-15

7 Structures

Ways to Organize Data in Structure Arrays
There are at least two ways you can organize data in a structure array: plane
organization and element-by-element organization. The method that best fits
your data depends on how you plan to access the data, and, for very large data
sets, whether you have system memory constraints.

Plane organization allows easier access to all values within a field.
Element-by-element organization allows easier access to all information
related to a single element or record. The following sections include an
example of each type of organization:

• “Plane Organization” on page 7-16

• “Element-by-Element Organization” on page 7-18

When you create a structure array, MATLAB stores information about each
element and field in the array header. As a result, structures with more
elements and fields require more memory than simpler structures that
contain the same data. For more information on memory requirements for
arrays, see “Memory Allocation” on page 21-2.

Plane Organization
Consider an RGB image with three arrays corresponding to color intensity
values.

7-16

Ways to Organize Data in Structure Arrays

If you have arrays RED, GREEN, and BLUE in your workspace, then these
commands create a scalar structure named img that uses plane organization:

img.red = RED;
img.green = GREEN;
img.blue = BLUE;

Plane organization allows you to easily extract entire image planes for
display, filtering, or other processing. For example, multiply the red intensity
values by 0.9:

adjustedRed = .9 * img.red;

If you have multiple images, you can add them to the img structure, so that
each element img(1),...,img(n) contains an entire image. For an example
that adds elements to a structure, see the following section.

7-17

7 Structures

Element-by-Element Organization
Consider a database with patient information. Each record contains data for
the patient’s name, test results, and billing amount.

These statements create an element in a structure array named patient:

patient(1).name = 'John Doe';
patient(1).billing = 127.00;
patient(1).test = [79, 75, 73; 180, 178, 177.5; 220, 210, 205];

Additional patients correspond to new elements in the structure. For example,
add an element for a second patient:

patient(2).name = 'Ann Lane';
patient(2).billing = 28.50;
patient(2).test = [68, 70, 68; 118, 118, 119; 172, 170, 169];

Element-by-element organization supports simple indexing to access data for
a particular patient. For example, find the average of the first patient’s test
results, calculating by rows (dimension 2) rather than by columns:

aveResultsDoe = mean(patient(1).test,2)

This code returns

aveResultsDoe =

7-18

Ways to Organize Data in Structure Arrays

75.6667
178.5000
212.0000

For information on processing data from more than one element at a time, see
“Access Data in a Structure Array” on page 7-6.

7-19

7 Structures

Memory Requirements for a Structure Array
Structure arrays do not require completely contiguous memory. However,
each field requires contiguous memory, as does the header that MATLAB
creates to describe the array. For very large arrays, incrementally increasing
the number of fields or the number of elements in a field results in Out of
Memory errors.

Allocate memory for the contents by assigning initial values with the struct
function, such as

newStruct(1:25,1:50) = struct('a',ones(20),'b',zeros(30),'c',rand(40));

This code creates and populates a 25-by-50 structure array S with fields a,
b, and c.

If you prefer not to assign initial values, you can initialize a structure array
by assigning empty arrays to each field of the last element in the structure
array, such as

newStruct(25,50).a = [];
newStruct(25,50).b = [];
newStruct(25,50).c = [];

or, equivalently,

newStruct(25,50) = struct('a',[],'b',[],'c',[]);

However, in this case, MATLAB only allocates memory for the header, and
not for the contents of the array.

For more information, see:

• “Preallocating Memory”

• “Memory Allocation” on page 21-2

7-20

8

Cell Arrays

• “What Is a Cell Array?” on page 8-2

• “Create a Cell Array” on page 8-3

• “Access Data in a Cell Array” on page 8-5

• “Add Cells to a Cell Array” on page 8-8

• “Delete Data from a Cell Array” on page 8-9

• “Combine Cell Arrays” on page 8-10

• “Pass Contents of Cell Arrays to Functions” on page 8-11

• “Preallocate Memory for a Cell Array” on page 8-14

• “Cell vs. Struct Arrays” on page 8-15

• “Multilevel Indexing to Access Parts of Cells” on page 8-17

8 Cell Arrays

What Is a Cell Array?
A cell array is a data type with indexed data containers called cells. Each
cell can contain any type of data. Cell arrays commonly contain lists of text
strings, combinations of text and numbers from spreadsheets or text files,
or numeric arrays of different sizes.

There are two ways to refer to the elements of a cell array. Enclose indices
in smooth parentheses, (), to refer to sets of cells — for example, to define a
subset of the array. Enclose indices in curly braces, {}, to refer to the text,
numbers, or other data within individual cells.

For more information, see:

• “Create a Cell Array” on page 8-3

• “Access Data in a Cell Array” on page 8-5

8-2

Create a Cell Array

Create a Cell Array
This example shows how to create a cell array using the {} operator or the
cell function.

When you have data to put into a cell array, create the array using the cell
array construction operator, {}:

myCell = {1, 2, 3;
'text', rand(5,10,2), {11; 22; 33}}

Like all MATLAB arrays, cell arrays are rectangular, with the same number
of cells in each row. myCell is a 2-by-3 cell array:

myCell =
[1] [2] [3]
'text' [5x10x2 double] {3x1 cell}

You also can use the {} operator to create an empty 0-by-0 cell array,

C = {}

If you plan to add values to a cell array over time or in a loop, you can create
an empty n-dimensional array using the cell function:

emptyCell = cell(3,4,2)

emptyCell is a 3-by-4-by-2 cell array, where each cell contains an empty
array, []:

emptyCell(:,:,1) =
[] [] [] []
[] [] [] []
[] [] [] []

emptyCell(:,:,2) =

[] [] [] []
[] [] [] []
[] [] [] []

For more information, see:

8-3

8 Cell Arrays

• “Access Data in a Cell Array” on page 8-5

• “Multidimensional Cell Arrays”

8-4

Access Data in a Cell Array

Access Data in a Cell Array
This example shows how to read and write data to and from a cell array. To
run the code in this example, create a 2-by-3 cell array of text and numeric
data:

C = {'one', 'two', 'three';
1, 2, 3};

There are two ways to refer to the elements of a cell array. Enclose indices
in smooth parentheses, (), to refer to sets of cells—for example, to define a
subset of the array. Enclose indices in curly braces, {}, to refer to the text,
numbers, or other data within individual cells.

Cell Indexing with Smooth Parentheses, ()

Cell array indices in smooth parentheses refer to sets of cells. For example,
the command

upperLeft = C(1:2,1:2)

creates a 2-by-2 cell array:

upperLeft =
'one' 'two'
[1] [2]

Update sets of cells by replacing them with the same number of cells. For
example, the statement

C(1,1:3) = {'first','second','third'}

replaces the cells in the first row of C with an equivalent-sized (1-by-3) cell
array:

C =
'first' 'second' 'third'
[1] [2] [3]

If cells in your array contain numeric data, you can convert the cells to a
numeric array using the cell2mat function:

8-5

8 Cell Arrays

numericCells = C(2,1:3)
numericVector = cell2mat(numericCells)

numericCells is a 1-by-3 cell array, but numericVector is a 1-by-3 array of
type double:

numericCells =
[1] [2] [3]

numericVector =
1 2 3

Content Indexing with Curly Braces, {}

Access the contents of cells—the numbers, text, or other data within the
cells—by indexing with curly braces. For example, the command

last = C{2,3}

creates a numeric variable of type double, because the cell contains a double
value:

last =
3

Similarly, this command

C{2,3} = 300

replaces the contents of the last cell of C with a new, numeric value:

C =
'first' 'second' 'third'
[1] [2] [300]

When you access the contents of multiple cells, such as

C{1:2,1:2}

MATLAB creates a comma-separated list. Because each cell can contain
a different type of data, you cannot assign this list to a single variable.
However, you can assign the list to the same number of variables as cells.
MATLAB assigns to the variables in column order. For example,

8-6

Access Data in a Cell Array

[r1c1, r2c1, r1c2, r2c2] = C{1:2,1:2}

returns

r1c1 =
first

r2c1 =
1

r1c2 =
second

r2c2 =
2

If each cell contains the same type of data, you can create a single variable
by applying the array concatenation operator, [], to the comma-separated
list. For example,

nums = [C{2,:}]

returns

nums =
1 2 300

For more information, see:

• “Multilevel Indexing to Access Parts of Cells” on page 8-17

• “Comma-Separated Lists” on page 2-100

8-7

8 Cell Arrays

Add Cells to a Cell Array
This example shows how to add cells to a cell array.

Create a 1-by-3 cell array:

C = {1, 2, 3};

Assign data to a cell outside the current dimensions:

C{4,4} = 44

MATLAB expands the cell array to a rectangle that includes the specified
subscripts. Any intervening cells contain empty arrays:

C =
[1] [2] [3] []
[] [] [] []
[] [] [] []
[] [] [] [44]

Add cells without specifying a value by assigning an empty array as the
contents of a cell:

C{5,5} = []

C is now a 5-by-5 cell array:

C =
[1] [2] [3] [] []
[] [] [] [] []
[] [] [] [] []
[] [] [] [44] []
[] [] [] [] []

For related examples, see:

• “Access Data in a Cell Array” on page 8-5

• “Combine Cell Arrays” on page 8-10

• “Delete Data from a Cell Array” on page 8-9

8-8

Delete Data from a Cell Array

Delete Data from a Cell Array
This example shows how to remove data from individual cells, and how to
delete entire cells from a cell array. To run the code in this example, create a
3-by-3 cell array:

C = {1, 2, 3; 4, 5, 6; 7, 8, 9};

Delete the contents of a particular cell by assigning an empty array to the
cell, using curly braces for content indexing, {}:

C{2,2} = []

This code returns

C =
[1] [2] [3]
[4] [] [6]
[7] [8] [9]

Delete sets of cells using standard array indexing with smooth parentheses,
(). For example, this command

C(2,:) = []

removes the second row of C:

C =
[1] [2] [3]
[7] [8] [9]

For related examples, see:

• “Add Cells to a Cell Array” on page 8-8

• “Access Data in a Cell Array” on page 8-5

8-9

8 Cell Arrays

Combine Cell Arrays
This example shows how to combine cell arrays by concatenation or nesting.
To run the code in this example, create several cell arrays with the same
number of columns:

C1 = {1, 2, 3};
C2 = {'A', 'B', 'C'};
C3 = {10, 20, 30};

Concatenate cell arrays with the array concatenation operator, []. In this
example, vertically concatenate the cell arrays by separating them with
semicolons:

C4 = [C1; C2; C3]

C4 is a 3-by-3 cell array:

C4 =
[1] [2] [3]
'A' 'B' 'C'
[10] [20] [30]

Create a nested cell array with the cell array construction operator, {}:

C5 = {C1; C2; C3}

C5 is a 3-by-1 cell array, where each cell contains a cell array:

C5 =
{1x3 cell}
{1x3 cell}
{1x3 cell}

For more information, see “Concatenating Matrices”.

8-10

Pass Contents of Cell Arrays to Functions

Pass Contents of Cell Arrays to Functions
These examples show several ways to pass data from a cell array to a
MATLAB function that does not recognize cell arrays as inputs.

• Pass the contents of a single cell by indexing with curly braces, {}. Access
part of an array within the cell by indexing further into the content
(multilevel indexing).

This example creates a cell array that contains text and a 20-by-2 array of
random numbers. Plot all of the data, and then plot only the first column
of data.

randCell = {'Random Data', rand(20,2)};
plot(randCell{1,2})
title(randCell{1,1})

figure
plot(randCell{1,2}(:,1))
title('First Column of Data')

• Combine numeric data from multiple cells using the cell2mat function.

This example creates a 5-by-2 cell array that stores temperature data for
three cities, and plots the temperatures for each city by date.

temperature(1,:) = {'01-Jan-2010', [45, 49, 0]};
temperature(2,:) = {'03-Apr-2010', [54, 68, 21]};
temperature(3,:) = {'20-Jun-2010', [72, 85, 53]};
temperature(4,:) = {'15-Sep-2010', [63, 81, 56]};
temperature(5,:) = {'31-Dec-2010', [38, 54, 18]};

allTemps = cell2mat(temperature(:,2));
dates = datenum(temperature(:,1), 'dd-mmm-yyyy');

plot(dates, allTemps)
datetick('x','mmm')

• Pass the contents of multiple cells as a comma-separated list to functions
that accept multiple inputs.

8-11

8 Cell Arrays

This example plots X against Y, and applies line styles from a 2-by-3 cell
array C.

X = -pi:pi/10:pi;
Y = tan(sin(X)) - sin(tan(X));

C(:,1) = {'LineWidth'; 2};
C(:,2) = {'MarkerEdgeColor'; 'k'};
C(:,3) = {'MarkerFaceColor'; 'g'};

plot(X, Y, '--rs', C{:})

For more information, see:

• “Access Data in a Cell Array” on page 8-5

• “Multilevel Indexing to Access Parts of Cells” on page 8-17

8-12

Pass Contents of Cell Arrays to Functions

• “Comma-Separated Lists” on page 2-100

8-13

8 Cell Arrays

Preallocate Memory for a Cell Array
This example shows how to initialize and allocate memory for a cell array.

Cell arrays do not require completely contiguous memory. However, each cell
requires contiguous memory, as does the cell array header that MATLAB
creates to describe the array. For very large arrays, incrementally increasing
the number of cells or the number of elements in a cell results in Out of
Memory errors.

Initialize a cell array by calling the cell function, or by assigning to the last
element. For example, these statements are equivalent:

C = cell(25,50);
C{25,50} = [];

MATLAB creates the header for a 25-by-50 cell array. However, MATLAB
does not allocate any memory for the contents of each cell.

For more information, see:

• “Preallocating Memory”

• “Memory Allocation” on page 21-2

8-14

Cell vs. Struct Arrays

Cell vs. Struct Arrays
This example compares cell and structure arrays, and shows how to store data
in each type of array. Both cell and structure arrays allow you to store data
of different types and sizes.

Structure Arrays

Structure arrays contain data in fields that you access by name.

For example, store patient records in a structure array.

patient(1).name = 'John Doe';
patient(1).billing = 127.00;
patient(1).test = [79, 75, 73; 180, 178, 177.5; 220, 210, 205];

patient(2).name = 'Ann Lane';
patient(2).billing = 28.50;
patient(2).test = [68, 70, 68; 118, 118, 119; 172, 170, 169];

Create a bar graph of the test results for each patient.

numPatients = numel(patient);
for p = 1:numPatients

figure
bar(patient(p).test)
title(patient(p).name)

end

Cell Arrays

Cell arrays contain data in cells that you access by numeric indexing.
Common applications of cell arrays include storing lists of text strings and
storing heterogeneous data from spreadsheets.

For example, store temperature data for three cities over time in a cell array.

temperature(1,:) = {'01-Jan-2010', [45, 49, 0]};
temperature(2,:) = {'03-Apr-2010', [54, 68, 21]};
temperature(3,:) = {'20-Jun-2010', [72, 85, 53]};
temperature(4,:) = {'15-Sep-2010', [63, 81, 56]};

8-15

8 Cell Arrays

temperature(5,:) = {'31-Dec-2010', [38, 54, 18]};

Plot the temperatures for each city by date.

allTemps = cell2mat(temperature(:,2));
dates = datenum(temperature(:,1), 'dd-mmm-yyyy');

plot(dates,allTemps)
datetick('x','mmm')

Other Container Arrays

Struct and cell arrays are the most commonly used containers for storing
heterogeneous data. If you have installed the Statistics Toolbox™, you can
also use dataset arrays. Alternatively, use map containers, or create your
own class.

Related Topics

• “Access Data in a Cell Array” on page 8-5

• “Access Data in a Structure Array” on page 7-6

• Chapter 10, “Map Containers”

• “Classes in the MATLAB Language”

8-16

Multilevel Indexing to Access Parts of Cells

Multilevel Indexing to Access Parts of Cells
This example explains techniques for accessing data in arrays stored within
cells of cell arrays. To run the code in this example, create a sample cell array:

myNum = [1, 2, 3];
myCell = {'one', 'two'};
myStruct.Field1 = ones(3);
myStruct.Field2 = 5*ones(5);

C = {myNum, 100*myNum;
myCell, myStruct};

Access the complete contents of a particular cell using curly braces, {}. For
example,

C{1,2}

returns the numeric vector from that cell:

ans =
100 200 300

Access part of the contents of a cell by appending indices, using syntax that
matches the data type of the contents. For example:

• Enclose numeric indices in smooth parentheses. For example, C{1,1}
returns the 1-by-3 numeric vector, [1, 2, 3]. Access the second element
of that vector with the syntax

C{1,1}(1,2)

which returns

ans =
2

• Enclose cell array indices in curly braces. For example, C{2,1} returns the
cell array {'one', 'two'}. Access the contents of the second cell within
that cell array with the syntax

C{2,1}{1,2}

8-17

8 Cell Arrays

which returns

ans =
two

• Refer to fields of a struct array with dot notation, and index into the array
as described for numeric and cell arrays. For example, C{2,2} returns a
structure array, where Field2 contains a 5-by-5 numeric array of fives.
Access the element in the fifth row and first column of that field with the
syntax

C{2,2}.Field2(5,1)

which returns

ans =
5

You can nest any number of cell and structure arrays. For example, add
nested cells and structures to C.

C{2,1}{2,2} = {pi, eps};
C{2,2}.Field3 = struct('NestedField1', rand(3), ...

'NestedField2', magic(4), ...
'NestedField3', {{'text'; 'more text'}});

These assignment statements access parts of the new data:

copy_pi = C{2,1}{2,2}{1,1}

part_magic = C{2,2}.Field3.NestedField2(1:2,1:2)

nested_cell = C{2,2}.Field3.NestedField3{2,1}

MATLAB displays:

copy_pi =
3.1416

part_magic =
16 2
5 11

8-18

Multilevel Indexing to Access Parts of Cells

nested_cell =
more text

8-19

8 Cell Arrays

8-20

9

Function Handles

• “What Is a Function Handle?” on page 9-2

• “Creating a Function Handle” on page 9-3

• “Calling a Function By Means of Its Handle” on page 9-7

• “Preserving Data from the Workspace” on page 9-10

• “Applications of Function Handles” on page 9-13

• “Saving and Loading Function Handles” on page 9-19

• “Advanced Operations on Function Handles” on page 9-20

• “Functions That Operate on Function Handles” on page 9-27

9 Function Handles

What Is a Function Handle?
A function handle is a callable association to a MATLAB function. It contains
an association to that function that enables you to invoke the function
regardless of where you call it from. This means that, even if you are outside
the normal scope of a function, you can still call it if you use its handle.

With function handles, you can:

• Pass a function to another function

• Capture data values for later use by a function

• Call functions outside of their normal scope

• Save the handle in a MAT-file to be used in a later MATLAB session

See “Applications of Function Handles” on page 9-13 for an explanation
of each of these applications.

9-2

Creating a Function Handle

Creating a Function Handle

In this section...

“Maximum Length of a Function Name” on page 9-4

“The Role of Scope, Precedence, and Overloading When Creating a Function
Handle” on page 9-4

“Obtaining Permissions from Class Methods” on page 9-5

“Using Function Handles for Anonymous Functions” on page 9-6

“Arrays of Function Handles” on page 9-6

You construct a handle for a specific function by preceding the function name
with an @ sign. The syntax is:

h = @functionname

where h is the variable to which the returned function handle is assigned.

Use only the function name, with no path information, after the @ sign. If
there is more than one function with this name, MATLAB associates with
the handle the one function source it would dispatch to if you were actually
calling the function.

Create a handle h for a function plot that is on your MATLAB path:

h = @plot;

Once you create a handle for a function, you can invoke the function by
means of the handle instead of using the function name. Because the handle
contains the absolute path to its function, you can invoke the function from
any location that MATLAB is able to reach, as long as the program file for
the function still exists at this location. This means that functions in one
file can call functions that are not on the MATLAB path, subfunctions in a
separate file, or even functions that are private to another folder, and thus
not normally accessible to that caller.

9-3

9 Function Handles

Maximum Length of a Function Name
Function names used in handles are unique up to N characters, where N is
the number returned by the function namelengthmax. If the function name
exceeds that length, MATLAB truncates the latter part of the name.

For function handles created for Sun™ Java constructors, the length of any
segment of the package name or class name must not exceed namelengthmax
characters. (The term segment refers to any portion of the name that lies
before, between, or after a dot. For example, java.lang.String has three
segments). The overall length of the string specifying the package and class
has no limit.

The Role of Scope, Precedence, and Overloading
When Creating a Function Handle
At the time you create a function handle, MATLAB must decide exactly which
function it is to associate the handle to. In doing so, MATLAB uses the same
rules used to determine which file to invoke when you make a function call.
To make this determination, MATLAB considers the following:

• Scope — The function named must be on the MATLAB path at the time
the handle is constructed.

• Precedence — MATLAB selects which function(s) to associate the
handle with, according to the function precedence rules described under
Determining Which Function Gets Called.

• Overloading — If additional files on the path overload the function for any
of the standard MATLAB classes, such as double or char, then MATLAB
associates the handle with these files, as well.

Program files that overload a function for classes other than the standard
MATLAB classes are not associated with the function handle at the time it
is constructed. Function handles do operate on these types of overloaded
functions, but MATLAB determines which implementation to call at the time
of evaluation in this case.

9-4

Creating a Function Handle

Obtaining Permissions from Class Methods
When creating a function handle inside a method of a class, the function
is resolved using the permissions of that method. When MATLAB invokes
the function handle, it does so using the permissions of the class. This gives
MATLAB the same access as the location where the function handle was
created, including access to private and protected methods accessible to that
class.

Example
This example defines two methods. One, updateObj, defines a listener
for an event called Update, and the other , callbackfcn, responds to this
event whenever it should occur. The latter function is a private function
and thus would not normally be within the scope of the notify function.
However, because @callbackfcn is actually a function handle, it retains the
permissions of the context that created the function handle:

classdef updateObj < handle
events

Update
end

methods
function obj = updateObj(varargin)

addlistener(obj, 'Update', @callbackfcn);
notify(obj, 'Update');

end
end

methods (Access = private)
function obj = callbackfcn(obj, varargin)

disp('Object Updated')
disp(obj);

end
end

end

To run this function, invoke updateObj at the MATLAB command line.

9-5

9 Function Handles

Using Function Handles for Anonymous Functions
Function handles also serve as the means of invoking anonymous functions.
An anonymous function is a one-line expression-based MATLAB function
that does not require a program file.

For example, the statement

sqr = @(x) x.^2;

creates an anonymous function that computes the square of its input
argument x. The @ operator makes sqr a function handle, giving you a means
of calling the function:

sqr(20)
ans =

400

Like nested functions, a handle to an anonymous function also stores all data
that will be needed to resolve the handle when calling the function. Shares
same issues as nested functions do.

See the documentation on “Anonymous Functions” on page 15-3 for more
information.

Arrays of Function Handles
To create an array of function handles, you must use a cell array:

trigFun = {@sin, @cos, @tan};

For example, to plot the cosine of the range -pi to pi at 0.01 intervals, use

plot(trigFun{2}(-pi:0.01:pi))

9-6

Calling a Function By Means of Its Handle

Calling a Function By Means of Its Handle

In this section...

“Calling Syntax” on page 9-7

“Calling a Function with Multiple Outputs” on page 9-8

“Returning a Handle for Use Outside of a Function File” on page 9-8

“Example — Using Function Handles in Optimization” on page 9-9

Function handles can give you access to functions you might not be able to
execute. For instance, with a handle you can call a function even if it is no
longer on your MATLAB path. You can also call a subfunction from outside
of the file that defines that function.

Calling Syntax
The syntax for calling a function using a function handle is the same used
when calling the function directly. For example, if you call function myFun
like this:

[out1, out2, ...] = myFun(in1, in2, ...);

then you would call it using a handle in the same way, but using the handle
name instead:

fHandle = @myFun;
[out1, out2, ...] = fHandle(in1, in2, ...);

There is one small difference. If the function being called takes no input
arguments, then you must call the function with empty parentheses placed
after the handle name. If you use only the handle name, MATLAB just
identifies the name of the function:

% This identifies the handle. % This invokes the function.

fHandle = @computer; fHandle = @computer;
fHandle fHandle()
ans = ans =

@computer PCWIN

9-7

9 Function Handles

Calling a Function with Multiple Outputs
The example below returns multiple values from a call to an anonymous
function. Create anonymous function f that locates the nonzero elements of
an array, and returns the row, column, and value of each element in variables
row, col, and val:

f = @(X)find(X);

Call the function on matrix m using the function handle f. Because the
function uses the MATLAB find function which returns up to three outputs,
you can specify from 0 to 3 outputs in the call:

m = [3 2 0; -5 0 7; 0 0 1]
m =

3 2 0
-5 0 7
0 0 1

[row col val] = f(m);

val
val =

3
-5
2
7
1

Returning a Handle for Use Outside of a Function File
As stated previously, you can use function handles to call a function that may
otherwise be hidden or out of scope. This example function getHandle returns
a function handle fHandle to a caller that is outside of the file:

function fHandle = getHandle
fHandle = @subFun;

function res = subFun(t1, t2, varargin);
...

9-8

Calling a Function By Means of Its Handle

Call getHandle to obtain a function handle with which to invoke the
subfunction. You can now call the subfunction as you would any function
that is in scope:

f1 = getHandle;
result = f1(startTime, endTime, procedure);

Example — Using Function Handles in Optimization
Function handles can be particularly useful in optimization work. If you have
the MathWorks Optimization Toolbox™ installed, click on any of the links
below to find information and examples on this topic:

• “Passing Extra Parameters” — Calling objective or constraint functions
that have parameters in addition to the independent variable.

• “Anonymous Function Objectives” — Use function handles in writing
simple objective functions.

• “Example: Nonlinear Curve Fitting with lsqcurvefit” — An example using
lsqcurvefit, which takes two inputs for the objective.

9-9

9 Function Handles

Preserving Data from the Workspace

In this section...

“Preserving Data with Anonymous Functions” on page 9-10

“Preserving Data with Nested Functions” on page 9-11

Both anonymous functions and nested functions make use of variable data
that is stored outside the body of the function itself. For example, the
anonymous function shown here uses two variables: X and K. You pass the X
variable into the anonymous function whenever you invoke the function. The
value for K however is taken from the currently active workspace:

K = 200;
fAnon = @(X)K * X;

fAnon([2.54 1.43 0.68 1.90 1.02 2.13]);

What would happen if you tried to invoke this function after you cleared K
from the workspace? Or if you saved the anonymous function to a .mat file
and then loaded it into an entirely separate computing environment where
K is not defined?

The answer is that MATLAB stores any values needed by an anonymous (or
nested) function within the handle itself. It does this at the time you construct
the handle. This does not include values from the argument list as these
values get passed in whenever you call the function.

Preserving Data with Anonymous Functions
If you create an anonymous function at the MATLAB command window, that
function has access to the workspace of your current MATLAB session. If you
create the function inside of another function, then it has access to the outer
function’s workspace. Either way, if your anonymous function depends upon
variables from an outside workspace, then MATLAB stores the variables and
their values within the function handle at the time the handle is created.

This example puts a 3-by-5 matrix into the base workspace, and then creates a
function handle to an anonymous function that requires access to the matrix.

9-10

Preserving Data from the Workspace

Create matrix A and anonymous function testAnon:

A = magic(5); A(4:5,:) = []
A =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

testAnon = @(x)x * A; % Anonymous function

Call the anonymous function via its handle, passing in a multiplier value.
This multiplies all elements by 5.2:

testAnon(5.2)
ans =

88.4000 124.8000 5.2000 41.6000 78.0000
119.6000 26.0000 36.4000 72.8000 83.2000
20.8000 31.2000 67.6000 104.0000 114.4000

Clear variable A from the base workspace and verify that this action has no
effect on the output of the anonymous function:

clear A

testAnon(5.2)
ans =

88.4000 124.8000 5.2000 41.6000 78.0000
119.6000 26.0000 36.4000 72.8000 83.2000
20.8000 31.2000 67.6000 104.0000 114.4000

This works because the variable A and its value at the time the anonymous
function is created is preserved within the function handle that also provides
access to the anonymous function. See “Variables Used in the Expression”
on page 15-8 for more information.

Preserving Data with Nested Functions
Nested functions are similar to anonymous functions in their ability to
preserve workspace data needed by a function handle. In this case however,
the workspace belongs to one of the functions inside of which the handle is
being created. See “Variable Scope in Nested Functions” on page 15-19 and

9-11

9 Function Handles

“Using Function Handles with Nested Functions” on page 15-21 for more
information on this subject.

This example shows a function getHandles that returns a handle to nested
function getApproxVal_V4. The nested function uses two variables, const
and adjust, from the workspace of the outer function. Calling getHandles
creates a function handle to the nested function and also stores these two
variables within that handle so that they will be available whenever the
nested function is invoked:

function handle = getHandles(adjust)
const = 16.3;
handle = @getApproxVal_V4;

function vOut = getApproxVal_V4(vectIn)
vOut = ((vectIn+adjust)*const) + ((vectIn-adjust)*const);
end

end

Call the getHandles function to obtain a handle to the nested function:

adjustVal = 0.023;
getApproxValue = getHandles(adjustVal);

getApproxValue([0.67 -0.09 1.01 0.33 -0.14 -0.23])
ans =

21.8420 -2.9340 32.9260 10.7580 -4.5640 -7.4980

The documentation on “Examining a Function Handle” on page 9-20 explains
how to see which variables are stored within a particular function handle.
Another helpful resource is “Using Function Handles with Nested Functions”
on page 15-21.

Loading a Saved Handle to a Nested Function
If you save a function handle to a nested function and, at some later date,
modify the function and then reload the handle, you may observe unexpected
behavior from the restored handle. when you invoke the function from the
reloaded handle.

9-12

Applications of Function Handles

Applications of Function Handles

In this section...

“Example of Passing a Function Handle” on page 9-13

“Pass a Function to Another Function” on page 9-13

“Capture Data Values For Later Use By a Function” on page 9-15

“Call Functions Outside of Their Normal Scope” on page 9-18

“Save the Handle in a MAT-File for Use in a Later MATLAB Session” on
page 9-18

Example of Passing a Function Handle
The following example creates a handle for a function supplied by MATLAB
called humps and assigns it to the variable h. (The humps function returns a
strong maxima near x = 0.3 and x = 0.9).

h = @humps;

After constructing the handle, you can pass it in the argument list of a call
to some other function, as shown here. This example passes the function
handle h that was just created as the first argument in a call to fminbnd. This
function then minimizes over the interval [0.3, 1].

x = fminbnd(h, 0.3, 1)
x =

0.6370

Using a function handle enables you to pass different functions for fminbnd to
use in determining its final result.

Pass a Function to Another Function
The ability to pass variables to a function enables you to run the function on
different values. In the same way, you can pass function handles as input
arguments to a function, thus allowing the called function to change the
operations it runs on the input data.

9-13

9 Function Handles

Example 1 — Run quad on Varying Functions
Run the quadrature function on varying input functions:

a = 0; b = 5;

quad(@log, a, b)
ans =

3.0472

quad(@sin, a, b)
ans =

0.7163

quad(@humps, a, b)
ans =

12.3566

Example 2 — Run quad on Anonymous Functions
Run quad on a MATLAB built-in function or an anonymous function:

n = quad(@log, 0, 3);

n = quad(@(x)x.^2, 0, 3);

Change the parameters of the function you pass to quad with a simple
modification of the anonymous function that is associated with the function
handle input:

a = 3.7;
z = quad(@(x)x.^a, 0, 3);

Example 3 — Compare quad Results on Different Functions
Compare the integral of the cosine function over the interval [a, b]:

a = 0; b = 10;
int1 = quad(@cos,a,b)

int1 =

9-14

Applications of Function Handles

-0.5440

with the integral over the same interval of the piecewise polynomial pp that
approximates the cosine function by interpolating the computed values x
and y:

x = a:b;
y = cos(x);
pp = spline(x,y);
int2 = quad(@(x)ppval(pp,x), a, b)

int2 =
-0.5485

Capture Data Values For Later Use By a Function
You can do more with a function handle than just create an association to a
certain function. By using anonymous functions, you can also capture certain
variables and their values from the function workspace and store them in
the handle. These data values are stored in the handle at the time of its
construction, and are contained within the handle for as long as it exists.
Whenever you then invoke the function by means of its handle, MATLAB
supplies the function with all variable inputs specified in the argument list
of the function call, and also any constant inputs that were stored in the
function handle at the time of its construction.

Storing some or all input data in a function handle enables you to reliably
use the same set of data with that function regardless of where or when you
invoke the handle. You can also interrupt your use of a function and resume
it with the same data at a later time simply by saving the function handle to
a MAT-file.

Example 1 — Constructing a Function Handle that Preserves
Its Variables
Compare the following two ways of implementing a simple plotting function
called draw_plot. The first case creates the function as one that you would
call by name and that accepts seven inputs specifying coordinate and property
information:

function draw_plot(x, y, lnSpec, lnWidth, mkEdge, mkFace, mkSize)

9-15

9 Function Handles

plot(x, y, lnSpec, ...

'LineWidth', lnWidth, ...

'MarkerEdgeColor', mkEdge, ...

'MarkerFaceColor', mkFace, ...

'MarkerSize', mkSize)

The second case implements draw_plot as an anonymous function to be
called by a function handle, h. The draw_plot function has only two inputs
now; the remaining five are specified only on a call to the handle constructor
function, get_plot_handle:

function h = get_plot_handle(lnSpec, lnWidth, mkEdge, ...
mkFace, mkSize)

h = @draw_plot;
function draw_plot(x, y)

plot(x, y, lnSpec, ...
'LineWidth', lnWidth, ...
'MarkerEdgeColor', mkEdge, ...
'MarkerFaceColor', mkFace, ...
'MarkerSize', mkSize)

end
end

Because these input values are required by the draw_plot function but are not
made available in its argument list, MATLAB supplies them by storing them
in the function handle for draw_plot at the time it is constructed. Construct
the function handle h, also supplying the values to be stored in handle:

h = get_plot_handle('--rs', 2, 'k', 'g', 10);

Now call the function, specifying only the x and y inputs:

x = -pi:pi/10:pi;
y = tan(sin(x)) - sin(tan(x));
h(x, y) % Draw the plot

The later section on “Examining a Function Handle” on page 9-20 continues
this example by showing how you can examine the contents of the function
and workspace contents of this function handle.

9-16

Applications of Function Handles

Example 2 — Varying Data Values Stored in a Function Handle
Values stored within a handle to a nested function do not have to remain
constant. The following function constructs and returns a function handle h to
the anonymous function addOne. In addition to associating the handle with
addOne, MATLAB also stores the initial value of x in the function handle:

function h = counter
x = 0;
h = @addOne;

function y = addOne;
x = x + 1;
y = x;
end

end

The addOne function that is associated with handle h increments variable x
each time you call it. This modifies the value of the variable stored in the
function handle:

h = counter;
h()
ans =

1
h()
ans =

2

Example 3 — You Cannot Vary Data in a Handle to an
Anonymous Function
Unlike the example above, values stored within a handle to an anonymous
function do remain constant. Construct a handle to an anonymous function
that just returns the value of x, and initialize x to 300. The value of x within
the function handle remains constant regardless of how you modify x external
to the handle:

x = 300;
h = @()x;

x = 50;
h()

9-17

9 Function Handles

ans =
300

clear x
h()
ans =

300

Call Functions Outside of Their Normal Scope
By design, only functions within a program file are permitted to access
subfunctions defined within that file. However, if, in this same file, you were
to construct a function handle for one of the internal subfunctions, and then
pass that handle to a variable that exists outside of the file, access to that
subfunction would be essentially unlimited. By capturing the access to the
subfunction in a function handle, and then making that handle available to
functions external to the file (or to the command line), the example extends
that scope. An example of this is shown in the preceding section, “Capture
Data Values For Later Use By a Function” on page 9-15.

Private functions also have specific access rules that limit their availability
with the MATLAB environment. But, as with subfunctions, MATLAB allows
you to construct a handle for a private function. Therefore, you can call it by
means of that handle from any location or even from the MATLAB command
line, should it be necessary.

Save the Handle in a MAT-File for Use in a Later
MATLAB Session
If you have one or more function handles that you would like to reuse in a later
MATLAB session, you can store them in a MAT-file using the save function
and then use load later on to restore them to your MATLAB workspace.

9-18

Saving and Loading Function Handles

Saving and Loading Function Handles
You can save and load function handles in a MAT-file using the MATLAB save
and load functions. If you load a function handle that you saved in an earlier
MATLAB session, the following conditions could cause unexpected behavior:

• Any of the files that define the function have been moved, and thus no
longer exist on the path stored in the handle.

• You load the function handle into an environment different from that in
which it was saved. For example, the source for the function either does
not exist or is located in a different folder than on the system on which
the handle was saved.

In both of these cases, the function handle is now invalid because it is no
longer associated with any existing function code. Although the handle is
invalid, MATLAB still performs the load successfully and without displaying
a warning. Attempting to invoke the handle, however, results in an error.

Invalid or Obsolete Function Handles
If you create a handle to a function that is not on the MATLAB path, or if you
load a handle to a function that is no longer on the path, MATLAB catches
the error only when the handle is invoked. You can assign an invalid handle
and use it in such operations as func2str. MATLAB catches and reports an
error only when you attempt to use it in a runtime operation.

9-19

9 Function Handles

Advanced Operations on Function Handles

In this section...

“Examining a Function Handle” on page 9-20

“Converting to and from a String” on page 9-21

“Comparing Function Handles” on page 9-23

Examining a Function Handle
Use the functions function to examine the contents of a function handle.

Caution MATLAB provides the functions function for querying and
debugging purposes only. Because its behavior may change in subsequent
releases, you should not rely upon it for programming purposes.

The following example is a continuation of an example in an earlier section of
the Function Handles documentation. See Example 1 in the section “Capture
Data Values For Later Use By a Function” on page 9-15 for the complete
example.

Construct a function handle that contains both a function association, and
data required by that function to execute. The following function constructs
the function handle, h:

function h = get_plot_handle(lnSpec, lnWidth, mkEdge, ...
mkFace, mkSize)

h = @draw_plot;
function draw_plot(x, y)

plot(x, y, lnSpec, ...
'LineWidth', lnWidth, ...
'MarkerEdgeColor', mkEdge, ...
'MarkerFaceColor', mkFace, ...
'MarkerSize', mkSize)

end
end

9-20

Advanced Operations on Function Handles

Use functions to examine the contents of the returned handle:

f = functions(h)
f =

function: 'get_plot_handle/draw_plot'
type: 'nested'
file: 'D:\matlab\work\get_plot_handle.m'

workspace: {[1x1 struct]}

The call to functions returns a structure with four fields:

• function — Name of the function or subfunction to which the handle
is associated. (Function names that follow a slash character (/) are
implemented in the program code as subfunctions.)

• type— Type of function (e.g., simple, nested, anonymous)

• file — Filename and path to the file. (For built-in functions, this is the
string 'MATLAB built-in function')

• workspace— Variables in the function workspace at the time the handle
was constructed, along with their values

Examine the workspace variables that you saved in the function handle:

f.workspace{:}
ans =

h: @get_plot_handle/draw_plot
lnSpec: '--rs'

lnWidth: 2
mrkrEdge: 'k'
mrkrFace: 'g'
mrkrSize: 10

Converting to and from a String
Two functions, str2func and func2str enable you to convert between a
string containing a function name and a function handle that is associated
with that function name.

9-21

9 Function Handles

Converting a String to a Function Handle
Another means of creating a function handle is to convert a string that holds
a function name to a handle for the named function. You can do this using
the str2func function:

handle = str2func('functionname');

The example below takes the name of a function as the first argument. It
compares part of the name to see if this is a polynomial function, converts the
function string to a function handle if it is not, and then calls the function by
means of its handle:

function run_function(funcname, arg1, arg2)
if strncmp(funcname, 'poly', 4)

disp 'You cannot run polynomial functions on this data.'
return

else
h = str2func(funcname);
h(arg1, arg2);

end

Note Nested functions are not accessible to str2func. To construct a
function handle for a nested function, you must use the function handle
constructor, @.

Converting a Function Handle to a String
You can also convert a function handle back into a string using the func2str
function:

functionname = func2str(handle);

This example converts the function handle h to a string containing the function
name, and then uses the function name in a message displayed to the user:

function call_h(h, arg1, arg2)
sprintf('Calling function %s ...\n', func2str(h))
h(arg1, arg2)

9-22

Advanced Operations on Function Handles

Comparing Function Handles
This section describes how MATLAB determines whether or not separate
function handles are equal to each other:

• “Comparing Handles Constructed from a Named Function” on page 9-23

• “Comparing Handles to Anonymous Functions” on page 9-23

• “Comparing Handles to Nested Functions” on page 9-24

• “Comparing Handles Saved to a MAT-File” on page 9-25

Comparing Handles Constructed from a Named Function
MATLAB considers function handles that you construct from the same named
function (e.g., handle = @sin) to be equal. The isequal function returns a
value of true when comparing these types of handles:

func1 = @sin;
func2 = @sin;
isequal(func1, func2)
ans =

1

If you save these handles to a MAT-file, and then load them back into the
workspace later on, they are still equal.

Comparing Handles to Anonymous Functions
Unlike handles to named functions, any two function handles that represent
the same anonymous function (i.e., handles to anonymous functions that
contain the same text) are not equal. This is because MATLAB cannot
guarantee that the frozen values of non-argument variables (such as A, below)
are the same.

A = 5;
h1 = @(x)A * x.^2;
h2 = @(x)A * x.^2;

isequal(h1, h2)
ans =

0

9-23

9 Function Handles

Note In general, MATLAB may underestimate the equality of function
handles. That is, a test for equality may return false even when the functions
happen to behave the same. But in cases where MATLAB does indicate
equality, the functions are guaranteed to behave in an identical manner.

If you make a copy of an anonymous function handle, the copy and the
original are equal:

h1 = @(x)A * x.^2; h2 = h1;
isequal(h1, h2)
ans =

1

Comparing Handles to Nested Functions
MATLAB considers function handles to the same nested function to be equal
only if your code constructs these handles on the same call to the function
containing the nested functions. Given this function that constructs two
handles to the same nested function:

function [h1, h2] = test_eq(a, b, c)
h1 = @findZ;
h2 = @findZ;

function z = findZ
z = a.^3 + b.^2 + c';
end

end

function handles constructed from the same nested function and on the same
call to the parent function are considered equal:

[h1 h2] = test_eq(4, 19, -7);

isequal(h1, h2),
ans =

1

while those constructed from different calls are not considered equal:

9-24

Advanced Operations on Function Handles

[q1 q2] = test_eq(3, -1, 2);

isequal(h1, q1)
ans =

0

Comparing Handles Saved to a MAT-File
If you save equivalent anonymous or nested function handles to separate
MAT-files, and then load them back into the MATLAB workspace, they are
no longer equal. This is because saving the function handle loses track of
the original circumstances under which the function handle was created.
Reloading it results in a function handle that compares as being unequal to
the original function handle.

Create two equivalent anonymous function handles:

h1 = @(x) sin(x);
h2 = h1;

isequal(h1, h2)
ans =

1

Save each to a different MAT-file:

save fname1 h1;
save fname2 h2;

Clear the MATLAB workspace, and then load the function handles back into
the workspace:

clear all
load fname1
load fname2

The function handles are no longer considered equal:

isequal(h1, h2)
ans =

9-25

9 Function Handles

0

Note, however, that equal anonymous and nested function handles that you
save to the same MAT-file are equal when loaded back into MATLAB.

9-26

Functions That Operate on Function Handles

Functions That Operate on Function Handles
MATLAB provides the following functions for working with function handles.
See the reference pages for these functions for more information.

Function Description

functions Return information describing a function handle.

func2str Construct a function name string from a function
handle.

str2func Construct a function handle from a function name
string.

save Save a function handle from the current workspace to
a MAT-file.

load Load a function handle from a MAT-file into the current
workspace.

isa Determine if a variable contains a function handle.

isequal Determine if two function handles are handles to the
same function.

9-27

9 Function Handles

9-28

10

Map Containers

• “Overview of the Map Data Structure” on page 10-2

• “Description of the Map Class” on page 10-4

• “Creating a Map Object” on page 10-6

• “Examining the Contents of the Map” on page 10-9

• “Reading and Writing Using a Key Index” on page 10-11

• “Modifying Keys and Values in the Map” on page 10-15

• “Mapping to Different Value Types” on page 10-18

10 Map Containers

Overview of the Map Data Structure
A Map is a type of fast key lookup data structure that offers a flexible means
of indexing into its individual elements. Unlike most array data structures
in the MATLAB software that only allow access to the elements by means of
integer indices, the indices for a Map can be nearly any scalar numeric value
or a character string.

Indices into the elements of a Map are called keys. These keys, along with the
data values associated with them, are stored within the Map. Each entry of a
Map contains exactly one unique key and its corresponding value. Indexing
into the Map of rainfall statistics shown below with a string representing the
month of August yields the value internally associated with that month, 37.3.

 327.2
 368.2
 197.6
 178.4
 100.0
 69.9
 32.3
 37.3
 19.0
 37.0
 73.2
 110.9
1551.0

Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual

KEYS VALUES

Aug 37.3

Mean monthly rainfall statistics (mm)

Keys are not restricted to integers as they are with other arrays. Specifically,
a key may be any of the following types:

• 1-by-N character array

• Scalar real double or single

10-2

Overview of the Map Data Structure

• Signed or unsigned scalar integer

The values stored in a Map can be of any type. This includes arrays of
numeric values, structures, cells, strings, objects, or other Maps.

Note A Map is most memory efficient when the data stored in it is a scalar
number or a character array.

10-3

10 Map Containers

Description of the Map Class

In this section...

“Properties of the Map Class” on page 10-4

“Methods of the Map Class” on page 10-5

A Map is actually an object, or instance, of a MATLAB class called Map. It is
also a handle object and, as such, it behaves like any other MATLAB handle
object. This section gives a brief overview of the Map class. For more details,
see the containers.Map reference page.

Properties of the Map Class
All objects of the Map class have three properties. You cannot write directly to
any of these properties; you can change them only by means of the methods
of the Map class.

Property Description Default

Count Unsigned 64-bit integer that represents the total
number of key/value pairs contained in the Map
object.

0

KeyType String that indicates the type of all keys contained
in the Map object. KeyType can be any of the
following: double, single, char, and signed or
unsigned 32-bit or 64-bit integer. If you attempt to
add keys of an unsupported type, int8 for example,
MATLAB makes them double.

char

ValueType String that indicates the type of values contained
in the Map object. If the values in a Map are all
scalar numbers of the same type, ValueType is set
to that type. If the values are all character arrays,
ValueType is 'char'. Otherwise, ValueType is
'any'.

any

10-4

Description of the Map Class

To examine one of these properties, follow the name of the Map object with
a dot and then the property name. For example, to see what type of keys
are used in Map mapObj, use

mapObj.KeyType

A Map is a handle object. As such, if you make a copy of the object, MATLAB
does not create a new Map; it creates a new handle for the existing Map that
you specify. If you alter the Map’s contents in reference to this new handle,
MATLAB applies the changes you make to the original Map as well. You can,
however, delete the new handle without affecting the original Map.

Methods of the Map Class
The Map class implements the following methods. Their use is explained in the
later sections of this documentation and also in the function reference pages.

Method Description

isKey Check if Map contains specified key

keys Names of all keys in Map

length Length of Map

remove Remove key and its value from Map

size Dimensions of Map

values Values contained in Map

10-5

10 Map Containers

Creating a Map Object

In this section...

“Constructing an Empty Map Object” on page 10-6

“Constructing An Initialized Map Object” on page 10-7

“Combining Map Objects” on page 10-8

A Map is an object of the Map class. It is defined within a MATLAB package
called containers. As with any class, you use its constructor function to
create any new instances of it. You must include the package name when
calling the constructor:

newMap = containers.Map(optional_keys_and_values)

Constructing an Empty Map Object
When you call the Map constructor with no input arguments, MATLAB
constructs an empty Map object. When you do not end the command with a
semicolon, MATLAB displays the following information about the object you
have constructed:

newMap = containers.Map()
newMap =

containers.Map handle
Package: containers

Properties:
Count: 0

KeyType: 'char'
ValueType: 'any'

Methods, Events, Superclasses

The properties of an empty Map object are set to their default values:

• Count = 0

• KeyType = 'char'

• ValueType = 'any'

10-6

Creating a Map Object

Once you construct the empty Map object, you can use the keys and values
methods to populate it. For a summary of MATLAB functions you can use
with a Map object, see “Methods of the Map Class” on page 10-5

Constructing An Initialized Map Object
Most of the time, you will want to initialize the Map with at least some keys
and values at the time you construct it. You can enter one or more sets of
keys and values using the syntax shown here. The brace operators ({}) are
not required if you enter only one key/value pair:

mapObj = containers.Map({key1, key2, ...}, {val1, val2, ...});

For those keys and values that are character strings, be sure that you
specify them enclosed within single quotation marks. For example, when
constructing a Map that has character string keys, use

mapObj = containers.Map(...
{'keystr1', 'keystr2', ...}, {val1, val2, ...});

As an example of constructing an initialized Map object, create a new Map for
the following key/value pairs taken from the monthly rainfall map shown
earlier in this section.

 327.2
 368.2
 197.6
 178.4
 100.0
 69.9
 32.3
 37.3
 19.0
 37.0
 73.2
 110.9
1551.0

Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Annual

KEYS VALUES

10-7

10 Map Containers

k = {'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', ...
'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', 'Annual'};

v = {327.2, 368.2, 197.6, 178.4, 100.0, 69.9, ...
32.3, 37.3, 19.0, 37.0, 73.2, 110.9, 1551.0};

rainfallMap = containers.Map(k, v)
rainfallMap =

containers.Map handle
Package: containers

Properties:
Count: 13

KeyType: 'char'
ValueType: 'double'

Methods, Events, Superclasses

The Count property is now set to the number of key/value pairs in the Map,
13, the KeyType is char, and the ValueType is double.

Combining Map Objects
You can combine Map objects vertically using concatenation. However, the
result is not a vector of Maps, but rather a single Map object containing all
key/value pairs of the contributing Maps. Horizontal vectors of Maps are not
allowed. See “Building a Map with Concatenation” on page 10-13, below.

10-8

Examining the Contents of the Map

Examining the Contents of the Map
Each entry in a Map consists of two parts: a unique key and its corresponding
value. To find all the keys in a Map, use the keys method. To find all of
the values, use the values method.

Create a new Map called tickets that maps airline ticket numbers to the
holders of those tickets. Construct the Map with four key/value pairs:

ticketMap = containers.Map(...
{'2R175', 'B7398', 'A479GY', 'NZ1452'}, ...
{'James Enright', 'Carl Haynes', 'Sarah Latham', ...
'Bradley Reid'});

Use the keys method to display all keys in the Map. MATLAB lists keys of
type char in alphabetical order, and keys of any numeric type in numerical
order:

keys(ticketMap)
ans =

'2R175' 'A479GY' 'B7398' 'NZ1452'

Next, display the values that are associated with those keys in the Map. The
order of the values is determined by the order of the keys associated with
them.

This table shows the keys listed in alphabetical order:

keys values

2R175 James Enright

A479GY Sarah Latham

B7398 Carl Haynes

NZ1452 Bradley Reid

The values method uses the same ordering of values:

values(ticketMap)
ans =

10-9

10 Map Containers

'James Enright' 'Sarah Latham' 'Carl Haynes' 'Bradley Reid'

10-10

Reading and Writing Using a Key Index

Reading and Writing Using a Key Index

In this section...

“Reading From the Map” on page 10-11

“Adding Key/Value Pairs” on page 10-12

“Building a Map with Concatenation” on page 10-13

When reading from the Map, use the same keys that you have defined and
associated with particular values. Writing new entries to the Map requires
that you supply the values to store with a key for each one .

Note For a large Map, the keys and value methods use a lot of memory as
their outputs are cell arrays.

Reading From the Map
After you have constructed and populated your Map, you can begin to use it to
store and retrieve data. You use a Map in the same manner that you would an
array, except that you are not restricted to using integer indices. The general
syntax for looking up a value (valueN) for a given key (keyN) is shown here. If
the key is a character string, enclose it in single quotation marks:

valueN = mapObj(keyN);

You can find any single value by indexing into the map with the appropriate
key:

passenger = ticketMap('2R175')
passenger =

James Enright

Find the person who holds ticket A479GY:

sprintf(' Would passenger %s please come to the desk?\n', ...
ticketMap('A479GY'))

ans =
Would passenger Sarah Latham please come to the desk?

10-11

10 Map Containers

To access the values of multiple keys, use the values method, specifying
the keys in a cell array:

values(ticketMap, {'2R175', 'B7398'})
ans =

'James Enright' 'Carl Haynes'

Map containers support scalar indexing only. You cannot use the colon
operator to access a range of keys as you can with other MATLAB classes. For
example, the following statements throw an error:

ticketMap('2R175':'B7398')
ticketMap(:)

Adding Key/Value Pairs
Unlike other array types, each entry in a Map consists of two items: the value
and its key. When you write a new value to a Map, you must supply its key as
well. This key must be consistent in type with any other keys in the Map.

Use the following syntax to insert additional elements into a Map:

existingMapObj(newKeyName) = newValue;

Add two more entries to the ticketMap used in the above examples, Verify
that the Map now has five key/value pairs:

ticketMap('947F4') = 'Susan Spera';
ticketMap('417R93') = 'Patricia Hughes';

ticketMap.Count
ans =

6

List all of the keys and values in Map ticketMap:

keys(ticketMap), values(ticketMap)
ans =

'2R175' '417R93' '947F4' 'A479GY' 'B7398' 'NZ1452'
ans =

Columns 1 through 3

10-12

Reading and Writing Using a Key Index

'James Enright' 'Patricia Hughes' 'Susan Spera'
Columns 4 through 6

'Sarah Latham' 'Carl Haynes' 'Bradley Reid'

Building a Map with Concatenation
You can add key/value pairs to a Map in groups using concatenation. The
concatenation of Map objects is different from other classes. Instead of
building a vector of s, MATLAB returns a single Map containing the key/value
pairs from each of the contributing Map objects.

Rules for the concatenation of Map objects are:

• Only vertical vectors of Map objects are allowed. You cannot create an
m-by-n array or a horizontal vector of s. For this reason, vertcat is
supported for Map objects, but not horzcat.

• All keys in each map being concatenated must be of the same class.

• You can combine Maps with different numbers of key/value pairs. The
result is a single Map object containing key/value pairs from each of the
contributing maps:

tMap1 = containers.Map({'2R175', 'B7398', 'A479GY'}, ...
{'James Enright', 'Carl Haynes', 'Sarah Latham'});

tMap2 = containers.Map({'417R93', 'NZ1452', '947F4'}, ...
{'Patricia Hughes', 'Bradley Reid', 'Susan Spera'});

% Concatenate the two maps:
ticketMap = [tMap1; tMap2];

The result of this concatenation is the same 6-element map that was
constructed in the previous section:

ticketMap.Count
ans =

6

keys(ticketMap), values(ticketMap)
ans =

'2R175' '417R93' '947F4' 'A479GY' 'B7398' 'NZ1452'

10-13

10 Map Containers

ans =
Columns 1 through 3

'James Enright' 'Patricia Hughes' 'Susan Spera'
Columns 4 through 6

'Sarah Latham' 'Carl Haynes' 'Bradley Reid'

• Concatenation does not include duplicate keys or their values in the
resulting Map object.

In the following example, both objects m1 and m2 use a key of 8. In Map m1,
8 is a key to value C; in m2, it is a key to value X:

m1 = containers.Map({1, 5, 8}, {'A', 'B', 'C'});
m2 = containers.Map({8, 9, 6}, {'X', 'Y', 'Z'});

Combine m1 and m2 to form a new Map object, m:

m = [m1; m2];

The resulting Map object m has only five key/value pairs. The value C was
dropped from the concatenation because its key was not unique:

keys(m), values(m)
ans =

[1] [5] [6] [8] [9]
ans =

'A' 'B' 'Z' 'X' 'Y'

10-14

Modifying Keys and Values in the Map

Modifying Keys and Values in the Map

In this section...

“Removing Keys and Values from the Map” on page 10-15

“Modifying Values” on page 10-15

“Modifying Keys” on page 10-16

“Modifying a Copy of the Map” on page 10-16

Note Keep in mind that if you have more than one handle to a Map,
modifying the handle also makes changes to the original Map. See “Modifying
a Copy of the Map” on page 10-16, below.

Removing Keys and Values from the Map
Use the remove method to delete any entries from a Map. When calling this
method, specify the Map object name and the key name to remove. MATLAB
deletes the key and its associated value from the Map.

The syntax for the remove method is

remove('mapName', 'keyname');

Remove one entry (the specified key and its value) from the Map object:

remove(ticketMap, 'NZ1452');
values(ticketMap)
ans =

Columns 1 through 3
'James Enright' 'Patricia Hughes' 'Susan Spera'

Columns 4 through 5
'Sarah Latham' 'Carl Haynes'

Modifying Values
You can modify any value in a Map simply by overwriting the current value.
The passenger holding ticket A479GY is identified as Sarah Latham:

10-15

10 Map Containers

ticketMap('A479GY')
ans =

Sarah Latham

Change the passenger’s first name to Anna Latham by overwriting the original
value for the A479GY key:

ticketMap('A479GY') = 'Anna Latham';

Verify the change:

ticketMap('A479GY')
ans =

'Anna Latham';

Modifying Keys
To modify an existing key while keeping the value the same, first remove
both the key and its value from the Map. Then create a new entry, this time
with the corrected key name.

Modify the ticket number belonging to passenger James Enright:

remove(ticketMap, '2R175');
ticketMap('2S185') = 'James Enright';

k = keys(ticketMap); v = values(ticketMap);
str1 = ' ''%s'' has been assigned a new\n';
str2 = ' ticket number: %s.\n';

fprintf(str1, v{1})
fprintf(str2, k{1})

'James Enright' has been assigned a new
ticket number: 2S185.

Modifying a Copy of the Map
Because ticketMap is a handle object, you need to be careful when making
copies of the Map. Keep in mind that by copying a Map object, you are really

10-16

Modifying Keys and Values in the Map

just creating another handle to the same object. Any changes you make to
this handle are also applied to the original Map.

Make a copy of Map ticketMap. Write to this copy, and notice that the change
is applied to the original Map object itself:

copiedMap = ticketMap;

copiedMap('AZ12345') = 'unidentified person';
ticketMap('AZ12345')
ans =

unidentified person

Clean up:

remove(ticketMap, 'AZ12345');
clear copiedMap;

10-17

10 Map Containers

Mapping to Different Value Types

In this section...

“Mapping to a Structure Array” on page 10-18

“Mapping to a Cell Array” on page 10-19

It is fairly common to store other classes, such as structures or cell arrays, in
a Map structure. However, Maps are most memory efficient when the data
stored in them belongs to one of the basic MATLAB types such as double,
char, integers, and logicals.

Mapping to a Structure Array
The following example maps airline seat numbers to structures that contain
information on who occupies the seat. To start out, create the following
structure array:

s1.ticketNum = '2S185'; s1.destination = 'Barbados';
s1.reserved = '06-May-2008'; s1.origin = 'La Guardia';
s2.ticketNum = '947F4'; s2.destination = 'St. John';
s2.reserved = '14-Apr-2008'; s2.origin = 'Oakland';
s3.ticketNum = 'A479GY'; s3.destination = 'St. Lucia';
s3.reserved = '28-Mar-2008'; s3.origin = 'JFK';
s4.ticketNum = 'B7398'; s4.destination = 'Granada';
s4.reserved = '30-Apr-2008'; s4.origin = 'JFK';
s5.ticketNum = 'NZ1452'; s5.destination = 'Aruba';
s5.reserved = '01-May-2008'; s5.origin = 'Denver';

Map five of the seats to one of these structures:

seatingMap = containers.Map(...
{'23F', '15C', '15B', '09C', '12D'}, ...
{s5, s1, s3, s4, s2});

Using this Map object, find information about the passenger, who has
reserved seat 09C:

seatingMap('09C')
ans =

10-18

Mapping to Different Value Types

ticketNum: 'B7398'
destination: 'Granada'

reserved: '30-Apr-2008'
origin: 'JFK'

seatingMap('15B').ticketNum
ans =

A479GY

Using two Maps together, you can find out the name of the person who has
reserved the seat:

passenger = ticketMap(seatingMap('15B').ticketNum)
passenger =

Anna Latham

Mapping to a Cell Array
As with structures, you can also map to a cell array in a Map object.
Continuing with the airline example of the previous sections, some of the
passengers on the flight have “frequent flyer” accounts with the airline. Map
the names of these passengers to records of the number of miles they have
used and the number of miles they still have available:

accountMap = containers.Map(...
{'Susan Spera','Carl Haynes','Anna Latham'}, ...
{{247.5, 56.1}, {0, 1342.9}, {24.6, 314.7}});

Use the Map to retrieve account information on the passengers:

name = 'Carl Haynes';
acct = accountMap(name);

fprintf('%s has used %.1f miles on his/her account,\n', ...
name, acct{1})

fprintf(' and has %.1f miles remaining.\n', acct{2})

Carl Haynes has used 0.0 miles on his/her account,
and has 1342.9 miles remaining.

10-19

10 Map Containers

10-20

11

Combining Unlike Classes

• “Valid Combinations of Unlike Classes” on page 11-2

• “Combining Unlike Integer Types” on page 11-3

• “Combining Integer and Noninteger Data” on page 11-6

• “Combining Cell Arrays with Non-Cell Arrays” on page 11-7

• “Empty Matrices” on page 11-8

• “Concatenation Examples” on page 11-9

11 Combining Unlike Classes

Valid Combinations of Unlike Classes
Matrices and arrays can be composed of elements of most any MATLAB data
type as long as all elements in the matrix are of the same type. If you do
include elements of unlike classes when constructing a matrix, MATLAB
converts some elements so that all elements of the resulting matrix are of the
same type. (See Chapter 3, “Overview of MATLAB Classes” for information
on any of the MATLAB classes discussed here.)

Data type conversion is done with respect to a preset precedence of classes.
The following table shows the five classes you can concatenate with an unlike
type without generating an error (that is, with the exception of character
and logical).

TYPE character integer single double logical

character character character character character invalid

integer character integer integer integer integer

single character integer single single single

double character integer single double double

logical invalid integer single double logical

For example, concatenating a double and single matrix always yields a
matrix of type single. MATLAB converts the double element to single to
accomplish this.

More
About

• “Combining Unlike Integer Types” on page 11-3
• “Combining Integer and Noninteger Data” on page 11-6
• “Combining Cell Arrays with Non-Cell Arrays” on page 11-7
• “Concatenation Examples” on page 11-9

11-2

Combining Unlike Integer Types

Combining Unlike Integer Types

In this section...

“Overview” on page 11-3

“Example of Combining Unlike Integer Sizes” on page 11-4

“Example of Combining Signed with Unsigned” on page 11-4

Overview
If you combine different integer types in a matrix (e.g., signed with unsigned,
or 8-bit integers with 16-bit integers), MATLAB returns a matrix in which all
elements are of one common type. MATLAB sets all elements of the resulting
matrix to the data type of the left-most element in the input matrix. For
example, the result of the following concatenation is a vector of three 16-bit
signed integers:

A = [int16(450) uint8(250) int32(1000000)]

MATLAB also displays a warning to inform you that the result may not be
what you had expected:

A = [int16(450) uint8(250) int32(1000000)];
Warning: Concatenation with dominant (left-most) integer class
may overflow other operands on conversion to return class.

You can disable this warning by entering the following two commands directly
after the operation that caused the warning. The first command retrieves
the message identifier associated with the most recent warning issued by
MATLAB. The second command uses this identifier to disable any further
warnings of that type from being issued:

[msg, intcat_msgid] = lastwarn;
warning('off', intcat_msgid);

To reenable the warning so that it will now be displayed, use

warning('on', intcat_msgid);

11-3

11 Combining Unlike Classes

You can use these commands to disable or enable the display of any MATLAB
warning.

Example of Combining Unlike Integer Sizes
After disabling the integer concatenation warnings as shown above,
concatenate the following two numbers once, and then switch their order. The
return value depends on the order in which the integers are concatenated.
The left-most type determines the data type for all elements in the vector:

A = [int16(5000) int8(50)]
A =

5000 50

B = [int8(50) int16(5000)]
B =

50 127

The first operation returns a vector of 16-bit integers. The second returns a
vector of 8-bit integers. The element int16(5000) is set to 127, the maximum
value for an 8-bit signed integer.

The same rules apply to vertical concatenation:

C = [int8(50); int16(5000)]
C =

50
127

Note You can find the maximum or minimum values for any MATLAB
integer type using the intmax and intmin functions. For floating-point types,
use realmax and realmin.

Example of Combining Signed with Unsigned
Now do the same exercise with signed and unsigned integers. Again, the
left-most element determines the data type for all elements in the resulting
matrix:

11-4

Combining Unlike Integer Types

A = [int8(-100) uint8(100)]
A =

-100 100

B = [uint8(100) int8(-100)]
B =

100 0

The element int8(-100) is set to zero because it is no longer signed.

MATLAB evaluates each element prior to concatenating them into a combined
array. In other words, the following statement evaluates to an 8-bit signed
integer (equal to 50) and an 8-bit unsigned integer (unsigned -50 is set to
zero) before the two elements are combined. Following the concatenation, the
second element retains its zero value but takes on the unsigned int8 type:

A = [int8(50), uint8(-50)]
A =

50 0

11-5

11 Combining Unlike Classes

Combining Integer and Noninteger Data
If you combine integers with double, single, or logical classes, all elements
of the resulting matrix are given the data type of the left-most integer. For
example, all elements of the following vector are set to int32:

A = [true pi int32(1000000) single(17.32) uint8(250)]

11-6

Combining Cell Arrays with Non-Cell Arrays

Combining Cell Arrays with Non-Cell Arrays
Combining a number of arrays in which one or more is a cell array returns a
new cell array. Each of the original arrays occupies a cell in the new array:

A = [100, {uint8(200), 300}, 'MATLAB'];
whos A

Name Size Bytes Class Attributes

A 1x4 477 cell

Each element of the combined array maintains its original class:

fprintf('Classes: %s %s %s %s\n',...
class(A{1}),class(A{2}),class(A{3}),class(A{4}))

Classes: double uint8 double char

11-7

11 Combining Unlike Classes

Empty Matrices
If you construct a matrix using empty matrix elements, the empty matrices
are ignored in the resulting matrix:

A = [5.36; 7.01; []; 9.44]
A =

5.3600
7.0100
9.4400

11-8

Concatenation Examples

Concatenation Examples

In this section...

“Combining Single and Double Types” on page 11-9

“Combining Integer and Double Types” on page 11-9

“Combining Character and Double Types” on page 11-10

“Combining Logical and Double Types” on page 11-10

Combining Single and Double Types
Combining single values with double values yields a single matrix. Note
that 5.73*10^300 is too big to be stored as a single, thus the conversion from
double to single sets it to infinity. (The class function used in this example
returns the data type for the input value).

x = [single(4.5) single(-2.8) pi 5.73*10^300]
x =

4.5000 -2.8000 3.1416 Inf

class(x) % Display the data type of x
ans =

single

Combining Integer and Double Types
Combining integer values with double values yields an integer matrix. Note
that the fractional part of pi is rounded to the nearest integer. (The int8
function used in this example converts its numeric argument to an 8-bit
integer).

x = [int8(21) int8(-22) int8(23) pi 45/6]
x =

21 -22 23 3 7

class(x)
ans =

int8

11-9

11 Combining Unlike Classes

Combining Character and Double Types
Combining character values with double values yields a character matrix.
MATLAB converts the double elements in this example to their character
equivalents:

x = ['A' 'B' 'C' 68 69 70]
x =

ABCDEF

class(x)
ans =

char

Combining Logical and Double Types
Combining logical values with double values yields a double matrix.
MATLAB converts the logical true and false elements in this example to
double:

x = [true false false pi sqrt(7)]
x =

1.0000 0 0 3.1416 2.6458

class(x)
ans =

double

11-10

12

Using Objects

• “MATLAB Objects” on page 12-2

• “General Purpose Vs. Specialized Arrays” on page 12-5

• “Key Object Concepts” on page 12-8

• “Creating Objects” on page 12-11

• “Accessing Object Data” on page 12-14

• “Calling Object Methods” on page 12-16

• “Desktop Tools Are Object Aware” on page 12-19

• “Getting Information About Objects” on page 12-21

• “Copying Objects” on page 12-26

• “Destroying Objects” on page 12-33

12 Using Objects

MATLAB Objects

In this section...

“Getting Oriented” on page 12-2

“Getting Comfortable with Objects” on page 12-2

“What Are Objects and Why Use Them?” on page 12-2

“Accessing Objects” on page 12-3

“Objects In the MATLAB Language” on page 12-3

“Other Kinds of Objects Used by MATLAB” on page 12-4

Getting Oriented
This chapter provides information for people using objects. It does not provide
a thorough treatment of object-oriented concepts, but instead focuses on what
you need to know to use the objects provided with MATLAB.

If you are interested in object-oriented programming in the MATLAB
language, see Object-Oriented Programming. For background information on
objects, see object-oriented design.

Getting Comfortable with Objects
MATLAB uses objects because they are a convenient way to package data.
Working with objects in MATLAB is like working with any variables and is
often more convenient because objects are optimized for specific purposes.
Think of an object as a neatly packaged collection of data that includes
functions that operate on the data. The documentation for any particular
object describes how to use it.

What Are Objects and Why Use Them?
In the simplest sense, objects are special-purpose variables that have a
specific set of operations that you can perform on the data they contain. You
do not need to know how the operations are implemented or how the data
is stored. This makes objects modular and easy to pass within application

12-2

http://en.wikipedia.org/wiki/Object-oriented_design

MATLAB® Objects

programs. It also isolates your code from changes to the object’s design and
implementation.

In a more general sense, objects are organized collections of data and functions
that have been designed for specific purposes. For example, an object might be
designed to contain time series data that consists of value/time-sample pairs
and associated information like units, sample uniformity, and so on. This
object could have a set of specific operations designed to perform analysis,
such as filtering, interpolating, and plotting. The following sections provide
examples of such objects.

Accessing Objects
You access an object with its variable name. Interacting with objects variables
in MATLAB software is really no different from interacting with any other
variables. Basically, you can perform the same common operations on
variables whether they hold numbers or specialized objects. For example, you
can do the following things with objects:

• Create it and assign a variable name so you can reference it again

• Assign or reassign data to it (see “Accessing Object Data” on page 12-14)

• Operate on its data (see “Calling Object Methods” on page 12-16)

• Convert it to another class (if this operation is supported by the object’s
class)

• Save it to a MAT-file so you can reload it later (see save)

• Copy it (see “Copying Objects” on page 12-26)

• Clear it from the workspace (clear)

Any object can have restrictions on how you create it, access its data, or what
operations you can perform on it. Refer to the documentation for the particular
MATLAB object for a description of what you can do with that object.

Objects In the MATLAB Language
The MATLAB language uses many specialized objects. For example,
MException objects capture information when errors occur, timer objects
execute code at a certain time interval, the serial object enables you to

12-3

12 Using Objects

communicate with devices connected to your computer’s serial port, and so
on. MATLAB toolboxes often define objects to manage the specific data and
analyses performed by the toolbox.

All of these objects are designed to provide specific functionality that is not as
conveniently available from general purpose language components.

Other Kinds of Objects Used by MATLAB
The MATLAB language enables you to use other kinds of objects in your
MATLAB programs. The following objects are different from the MATLAB
objects described in this documentation. See the individual sections
referenced below for information on using these objects.

• Handle Graphics® objects represent objects used to create graphs and
GUIs. These objects provide a set/get interface to property values, but
are not extensible by subclassing. See “Handle Graphics Objects” for more
information.

• Sun Java objects can be used in MATLAB code enabling you to access the
capabilities of Java classes. See “Using Java Libraries from MATLAB”
for more information.

• Microsoft COM objects enable you to integrate these software components
into your application. See “Using COM Objects from MATLAB ” for more
information.

• Microsoft .NET objects enable you to integrate .NET assemblies into
your application. See “Using .NET Libraries from MATLAB” for more
information.

• User-defined MATLAB objects created prior to Version 7.6 used different
syntax for class definition (no classdef block) and exhibit other differences.
See “Compatibility with Previous Versions ” for more information.

12-4

General Purpose Vs. Specialized Arrays

General Purpose Vs. Specialized Arrays

In this section...

“How They Differ” on page 12-5

“Using General-Purpose Data Structures” on page 12-5

“Using Specialized Objects” on page 12-6

How They Differ
The MATLAB language enables you to use both general-purpose and
specialized arrays. For example, numeric multidimensional arrays, struct,
and cell arrays provide general-purpose data storage. You typically
extract data from the array and pass this data to functions (e.g., to perform
mathematical analysis). Then, you store the data back in general-purpose
arrays.

When using a specialized object, you typically pass the object’s data to a
function that creates the object. Once you have created the object, you use
specially defined functions to operate on the data. These functions are unique
to the object and are designed specifically for the type and structure of the
data contained by the object.

Using General-Purpose Data Structures
A commonly used general-purpose data structure references data via
fieldnames. For example, these statements create a MATLAB struct (a
MATLAB structure array):

s.Data = rand(10,1);
s.Time = .01:.01:.1;
s.Name = 'Data1';
s.Units = 'seconds';

The structure s contains two arrays of numbers. However, s is a generic type
in the sense that MATLAB does not define special functions to operate on the
data in this particular structure. For example, while s contains two fields that
would be useful to plot, Data and Time, you cannot pass s to the plot function:

12-5

12 Using Objects

plot(s)
Error using plot
Not enough input arguments.

While s has enough information to create a plot of Data versus Time, plot
cannot access this data because structures like s can contain any values in
its fields and the fields can have any name. Just because one field is named
Data does not force you to assign data to that field.

To plot the data in s, you have to extract the data from the fields, pass them
as numeric arrays in the desired order to the plot function, add a title,
labels, and so on:

plot(s.Time,s.Data)
title(['Time Series Plot: ' s.Name])
xlabel(['Time (' s.Units ')'])
ylabel(s.Name)

You could create a function to perform these steps for you. Other programs
using the structure s would need to create their own functions or access the
one you created.

Using Specialized Objects
Compare the array s above to an object that you have designed specifically
to contain and manipulate time series data. For example, the following
statement creates a MATLAB timeseries object. It is initialized to store the
same data as the structure s above:

tsobj = timeseries(rand(10,1),.01:.01:.1,'Name','Data1');

The function that creates the object tsobj, accepts sample data, sample
times, a property name/property value pair (Name/Data1), and uses a default
value of Units (which is seconds).

The designer of this object created a special version of the plot function that
works directly with this object. For example:

plot(tsobj)

12-6

General Purpose Vs. Specialized Arrays

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

D
at

a1

Time Series Plot:Data1

Notice how the object’s plot function creates a graph that is plotted and
labeled with the data from the tsobj object. As a user of this object, you do
not need write your own code to produce this graph. The class design specifies
the standard way to present graphs of timeseries data and all clients of this
object use the same code for plotting.

See “Time Series Objects” for more on using MATLAB timeseries objects.

12-7

12 Using Objects

Key Object Concepts

In this section...

“Basic Concepts” on page 12-8

“Classes Describe How to Create Objects” on page 12-8

“Properties Contain Data” on page 12-9

“Methods Implement Operations” on page 12-9

“Events are Notices Broadcast to Listening Objects” on page 12-10

Basic Concepts
There are some basic concepts that are fundamental to objects. Objects
represent something in the real world, like an error condition or the set
of data you collected in a product test. Objects enable you to do something
useful, like provide an error report or analyze and present the results of tests.

There are basic components that MATLAB uses to realize the design of an
object. These components include:

• Classes

• Properties

• Methods

• Events

Classes Describe How to Create Objects
A class defines a set of similar objects. It is a description from which MATLAB
creates a particular instance of the class, and it is the instance (that is, the
object) that contains actual data. Therefore, while there is a timeseries
class, you work with timeseries objects.

Classes are defined in code files — either as separate .m files or built-in to the
MATLAB executable. Objects are specific representations of a class that you
access through workspace variables.

12-8

Key Object Concepts

Properties Contain Data
Objects store data in properties. Consider a timeseries object as an example.
timeseries object properties contain time series data, corresponding time
values, and related information, such as units, events, data quality, and
interpolation method. MATLAB objects enable you to access property data
directly (see “Accessing Object Data” on page 12-14 for information on
property syntax).

Properties are sometimes called fields in other programming languages and
are similar to the fields of MATLAB structures. Properties have descriptive
names, such as Data and DataInfo, in the case of timeseries objects, and
can contain any kind of MATLAB data, including other objects.

An object, then, is a container for a predefined set of data. Unlike a cell array
or structure, you cannot add new properties or delete defined properties
from an object. Doing so would compromise the object’s intended purpose
and violate the class design.

The class design can restrict the values you can assign to a property. For
example, a Length property might restrict possible values to positive integers
or might be read only and determine its own value when queried.

Methods Implement Operations
Class methods are functions designed to work with objects of a particular
class. Methods enable the class designer to implement specific operations that
are optimized for the data contained in the object. You do not have to extract
the data from the object, modify its format, and pass it to a general-purpose
MATLAB function because the class defines methods with an awareness of
the object’s structure.

Methods can define operations that are unique to a particular class of object,
such as adding a data sample to an existing set of time series data, or can
overload common operations in a way that makes sense for the particular
object. For example, timeseries objects have an addsample method to add
a new data sample to an existing timeseries object. Also, timeseries
overloads the MATLAB plot function to work with timeseries objects.

12-9

12 Using Objects

MATLAB software determines which overloaded version of a method to call
based on the class of the object passed as an argument. If you execute a
MATLAB statement like:

tsobjnew = tsobj1 + tsobj2;

where tsobj1 and tsobj2 are timeseries objects, MATLAB calls the
timeseries version of the + operation (if defined) and returns a new
timeseries object.

Because the timeseries class defines the operation, you can add a
timeseries object to a scalar number:

tsobjnew = tsobj1 + 4;

The class definition determines what happens when you add a scalar double
to a timeseries object (the scalar is added to each Data value).

Methods make working with objects convenient for the user, but also provide
advantages to the class designer. Methods hide implementation details from
users—you do not need to create your own functions to access and manipulate
data, as you would when using general-purpose data structures like structs
and cell arrays. This provides the flexibility to change the internal design
of an object without affecting object clients (i.e., application programs that
use the objects).

Events are Notices Broadcast to Listening Objects
Classes can defined names for specific actions and trigger the broadcast of
notices when those actions occur. Listeners respond to the broadcast of an
event notice by executing a predefined function.

For example, objects can listen for the change of the value of a property
and execute a function when that change occurs. If an object defines an
event for which you can define a listening object, the object’s documentation
describes that event. See “Events — Sending and Responding to Messages”
for information on how class designers use events.

12-10

Creating Objects

Creating Objects

In this section...

“Class Constructor” on page 12-11

“When to Use Package Names” on page 12-11

Class Constructor
Usually, you create an object by calling a function designed for the purpose of
creating that specific class of object. For example, the following code creates a
timeseries object and assigns it to the variable tsboj:

load count.dat % Load some data
tsobj = timeseries(count(:,1),1:24,'Name','Data1');

The timeseries constructor creates an object and initializes its data with the
values specified as arguments. Classes that create objects define a special
method whose purpose is to create objects of the class. This method has the
same name as the class and is called the class constructor.

However, in some cases, you might create objects by calling other functions or
even using a GUI. For example, a try-catch block can return an MException
object that contains information about a specific error condition. In this case,
you do not explicitly create the object, rather it is returned by the catch
statement (see “Accessing Object Data” on page 12-14 for an example).

When to Use Package Names
A package is a container that provides a logical grouping for class and function
definitions. The class and function names within a given package must be
unique, but can be reused in other packages. Packages are folders that begin
with the + character.

If a package folder contains a class definition, then you must use the package
name when calling the class constructor. For example, this statement creates
a Map object, whose class definition file is in a folder in the containers
package:

mapobj = containers.Map({'rose','bicycle'},{'flower','machine'});

12-11

12 Using Objects

You need to use the package name to refer to:

• Class constructors (e.g., containers.Map), which you call to create an object

• Static methods (methods that do not require an object of the class as an
argument)

• Package functions (functions defined in the package)

However, because MATLAB uses the class of an object to determine which
ordinary method to call, you do not need to use the package name in
conjunction with object references. For example, suppose you have the
following folder structure:

pathfolder/+packagename/@ClassName/ClassName.m
pathfolder/+packagename/@ClassName/staticMethodName.m
pathfolder/+packagename/functionName.m

In the following examples, obj is the object you are creating.

% Create object of ClassName
obj = packagename.ClassName(...);

% Call methodName
obj.methodName(...);

% Set or get the value of property PropertyName
obj.PropertyName = x;
x = obj.PropertyName;

% Call static method staticMethodName
packagename.ClassName.staticMethodName(...);

% Call package function functionName
packagename.functionName(...)

If a package folder contains a class definition file, then consider the package
name as part of the class name. Wherever you need to use the class name,
include the package name. For example, containers.Map is the full class
name of the Map class.

12-12

Creating Objects

See the object’s user documentation for the syntax you need to use to create
objects.

See “Organizing Classes in Folders” and “Create a Namespace with Packages”
for more information on the use of packages.

See “Importing Classes” for information on importing packages into functions.

12-13

12 Using Objects

Accessing Object Data

In this section...

“Listing Public Properties” on page 12-14

“Getting Property Values” on page 12-14

“Setting Property Values” on page 12-15

Listing Public Properties

Note Always use the correct case when referring to properties by name.

Display the names of all public object properties using the properties
function with the object’s class name or with an actual object. For example:

>> properties('MException')

Properties for class MException:
identifier
message
cause
stack

Getting Property Values
After creating an object, you can access the values of its properties:

try
a = rand(4);
a(17) = 7;

catch me % catch creates an MException object named me
disp(['Current error identifier: ' me.identifier])

end
Current error identifier: MATLAB:indexed_matrix_cannot_be_resized

Access the data in properties using dot notation:

object.PropertyName

12-14

Accessing Object Data

For example, you can access the message property of the MException object,
me, with this syntax:

me.message
ans =
In an assignment A(I) = B, a matrix A cannot be resized.

See “Capturing Information About the Error” on page 18-5 for more
information on using MException objects.

Setting Property Values
Objects often restrict what values you can assign to them. For example, the
following timeseries object has 10 data values, each corresponding to a
sample time:

tsobj = timeseries(rand(10,1),1:10,'Name','Random Sample');

Now suppose you attempt to set the Data property to a three-element vector:

tsobj.Data = [1 2 3];
Error using timeseries.timeseries>timeseries.utreshape
Size of the data array is incompatible with the time vector.

The timeseries class design ensures that the number of data samples
matches the number of time samples. This illustrates one of the advantages a
specialized object has over a general purpose-data structure like a MATLAB
struct.

12-15

12 Using Objects

Calling Object Methods

In this section...

“What Operations Can You Perform” on page 12-16

“Method Syntax” on page 12-16

“Class of Objects Returned by Methods” on page 12-18

What Operations Can You Perform
Methods define an object’s behavior. Consequently, classes implement
methods that an object user is unlikely to call directly. The user
documentation for the object you are using describes the operations you can
perform on any particular object.

You can list the methods defined by a class with the methods or methodsview
functions:

methods('timeseries')

Methods for class timeseries:

addevent gettsbetweenevents set
addsample horzcat setabstime
createTstoolNode idealfilter setinterpmethod
ctranspose init setprop
...

Method Syntax
Call an object’s method using dot notation:

returnedValue = object.methodName(args,...)

You also can call a method using function syntax, passing the object as the
first (left-most) argument.

returnedValue = methodName(object,args,...)

12-16

Calling Object Methods

For example, MException objects have a getReport method that returns
information about the error.

try
surf

catch me
disp(me.getReport)

end

Error using ==> surf at 50
Not enough input arguments.

Dot and function notation are usually equivalent. That is, both of the
following statements return the MException report:

rpt = getReport(me); % Call getReport using function notation
rpt = me.getReport; % Call getReport using dot notation

Calling the Correct Method
It is possible for the function syntax to call an unexpected method if there is
more than one object in the argument list. Suppose there are two classes,
ClassA and ClassB, that define a method called addData. Suppose further
that ClassA is defined as being inferior to ClassB in precedence (something
that the class designer can do in the class definition). In this situation, given
objA is of ClassA and objB is of ClassB, the following two statement call
different methods:

addData(objA,objB) % Calls objB.addData
objA.addData(objB) % Calls objA.addData

If ClassA and ClassB had equal precedence, then the left-most argument
determines which method MATLAB calls (i.e., objA.addData in both
statements).

It is unlikely that you will encounter this particular scenario, however, if you
are calling a method that accepts more than one object as arguments, using
dot notation removes any ambiguity about which object’s method MATLAB
calls.

12-17

12 Using Objects

Class of Objects Returned by Methods
While methods sometimes return objects of the same class, this is not always
the case. For example, the MException object’s getReport returns a character
string:

try
surf

catch me
rpt = me.getReport;

end

whos
Name Size Bytes Class Attributes

me 1x1 1118 MException
rpt 1x126 252 char

Methods can return any type of value and properties can contain any type of
value. However, class constructor methods always return an object or array of
objects of the same type as the class.

12-18

Desktop Tools Are Object Aware

Desktop Tools Are Object Aware

In this section...

“Tab Completion Works with Objects” on page 12-19

“Editing Objects with the Variable Editor” on page 12-19

Tab Completion Works with Objects
MATLAB tab completion works with objects. For example, if you enter an
object name followed by a dot:

tsobj.

and then press the tab key, MATLAB pops up a selection box with a list of
properties and methods:

The more letters you complete after the dot, the more specific is the list. See
“Complete Names in the Command Window Using the Tab Key” for more
information.

Editing Objects with the Variable Editor
You can use the MATLAB Variable Editor to edit object properties. To open
an object in the Variable Editor, you can double-click the object name in the
Workspace browser or use the openvar command:

12-19

12 Using Objects

tsobj = timeseries(rand(10,1),.01:.01:.1,'Name','Data1');
openvar tsobj

See “Viewing and Editing Workspace Variables with the Variable Editor”
for more information.

12-20

Getting Information About Objects

Getting Information About Objects

In this section...

“The Class of Workspace Variables” on page 12-21

“Information About Class Members” on page 12-23

“Logical Tests for Objects” on page 12-23

“Displaying Objects” on page 12-24

“Getting Help for MATLAB Objects” on page 12-25

The Class of Workspace Variables
All workspace variables are of a specific class. For example, consider the
following variable created in your workspace:

load count.dat % Load some data
tsobj = timeseries(count(:,1),1:24,'Name','Data1');
whos

Name Size Bytes Class Attributes

count 24x3 576 double
tsobj 1x1 1261 timeseries

The whos command lists information about your workspace variables. Notice
that the variable loaded from the count.dat file (count) is an array of
doubles. You know, therefore, that you can perform indexing and arithmetic
operations on this array. For example:

newcount = sum(count,2);
newcount(8:15) = NaN;
bar(newcount)

Indexed assignment and the bar function work with inputs of class double.

12-21

12 Using Objects

0 5 10 15 20 25
0

100

200

300

400

500

600

However, the timeseries class does not define a bar method for timeseries
objects. The timeseries class defines a plotmethod for graphing because the
class design specified a line plot as the best way to represent time series data.

Extracting Data From Object Properties
Suppose you have a timeseries object and you want to work directly with the
numeric values of the timeseries data. You can extract data from the object
properties and assign these values to an array. For example

load count.dat
tsobj = timeseries(sum(count,2),1:24,'Name','DataSum');
d = tsobj.Data;
t = tsobj.Time;
n = tsobj.Name;
d(8:15) = NaN;
bar(t,d); title(n)

Testing for the Class of an Object
Suppose you create a function that operates on more than one class of object.
If you have a timeseries object, you call the timeseries plot method, but

12-22

Getting Information About Objects

if the object is of class double, you can call the bar function (which isn’t
supported by timeseries objects). You could use isa as in the following code
to make this determination:

obj = tsobj.Data; % Define an input variable
function myPlotter(obj)

if isa(obj,'timeseries')
plot(obj)

elseif isa(obj,'double')
bar(obj)

end
end

Information About Class Members
These functions provide information about the object.

Function Purpose

class Return class of object

events List of event names defined by the class

methods List of methods implemented by the class

methodsview Information on class methods in separate window

properties List of class property names

Logical Tests for Objects
In functions, you might need conditional statements to determine the status
of an object before performing certain actions. For example, you might
perform different actions based on the class of an object (see “Testing for the
Class of an Object” on page 12-22). The following functions provide logical
tests for objects:

12-23

12 Using Objects

Function Purpose

isa Determine whether argument belongs to a particular
class. True for object’s class and all of object’s
superclasses.

isequal Determine if two objects are equal.

isobject Determine whether the input is a MATLAB object.

Testing for Object Equality
isequal finds two objects to be equal if all the following conditions are met:

• Both objects are of the same class

• Both objects are of the same size

• All corresponding property values are equal

isequal tests the value of every array element in every property and every
property of every object contained in the objects being tested. As contained
objects are tested for equality, MATLAB calls each object’s own version of
isequal (if such versions exist).

If objects contain large amounts of data stored in other objects, then testing
for equality can be a time-consuming process.

Identifying MATLAB Objects
The isobject function returns true only for MATLAB objects. For Sun Java
objects, use isjava. For Handle Graphics objects, use ishandle.

Note ishandle returns false for MATLAB handle objects. See “Testing for
Handle or Value Class” on page 12-31 for more information.

Displaying Objects
When you issue commands that return objects and do not terminate those
commands with a semicolon, or when you pass an object to the disp function,
MATLAB displays information about the object. For example:

12-24

Getting Information About Objects

hobj = containers.Map({'Red Sox','Yankees'},
{'Boston','New York'})
hobj =

containers.Map handle
Package: containers

Properties:
Count: 2

KeyType: 'char'
ValueType: 'char'

Methods, Events, Superclasses

This information includes links (shown in blue) to documentation on the
object’s class and superclasses, and lists of methods, events, and superclasses.
Properties and their current values are also listed.

Some classes (timeseries, for example) redefine how they display objects to
provide more useful information for this particular class.

Getting Help for MATLAB Objects
You can get documentation for MATLAB objects using the doc command
with the class name. To see the reference pages for the objects used in this
chapter, use the following commands:

doc timeseries
doc MException
doc containers.Map % Include the package name

12-25

12 Using Objects

Copying Objects

In this section...

“Two Copy Behaviors” on page 12-26

“Value Object Copy Behavior” on page 12-26

“Handle Object Copy Behavior” on page 12-27

“Testing for Handle or Value Class” on page 12-31

Two Copy Behaviors
There are two fundamental kinds of MATLAB classes—handles and values.

Value classes create objects that behave like ordinary MATLAB variables
with respect to copy operations. Copies are independent values. Operations
that you perform on one object do not affect copies of that object.

Handle classes create objects that behave as references. This is because a
handle, and all copies of this handle, refer to the same underlying object.
When you create a handle object, you can copy the handle, but not the data
referenced by the object’s properties. Any operations you perform on a handle
object are visible from all handles that reference that object.

Value Object Copy Behavior
MATLAB numeric variables are of value objects. For example, when you copy
a to the variable b, both variables are independent of each other. Changing
the value of a does not change the value of b:

a = 8;
b = a;

Now reassign a and b is unchanged:

a = 6;
b
b =

8

12-26

Copying Objects

Clearing a does not affect b:

clear a
b
b =

8

Value Object Properties
The copy behavior of values stored as properties in value objects is the same.
For example, suppose vobj1 is a value object with property a:

vobj1.a = 8; % Property is set to a value

If you copy vobj1 to vobj2, and then change the value of vobj1 property a, you
can see that the value of the copied object’s property vobj2.a is unaffected:

vobj2 =vobj1;
vobj1.a = 5;

vobj2.a
ans =

8

Handle Object Copy Behavior
Here is a handle class called HdClass that defines a property called Data.

classdef HdClass < handle
properties

Data
end
methods

function obj = HdClass(val)
if nargin > 0

obj.Data = val;
end

end
end

end

Create an object of this class with the following statement:

12-27

12 Using Objects

hobj1 = HdClass(8)

Because this statement is not terminated with a semicolon, MATLAB displays
information about the object:

hobj1 =

HdClass handle

Properties:
Data: 8

Methods, Events, Superclasses

The variable hobj1 is a handle that references the object created. Copying
hobj1 to hobj2 results in another handle (the variable hobj2) referring to
the same object:

hobj2 = hobj1
hobj2 =

HdClass handle

Properties:
Data: 8

Methods, Events, Superclasses

Because handle objects reference the data contained in their properties,
copying an object copies the handle to a new variable name, but the properties
still refer to the same data. For example, given that hobj1 is a handle object
with property Data:

hobj1.Data

ans =

8

Change the value of hobj1’s Data property and the value of the copied object’s
Data property also changes:

12-28

Copying Objects

hobj1.Data = 5;

hobj2.Data

ans =

5

Because hobj2 and hobj1 are handles to the same object, changing the copy,
hobj2, also changes the data you access through handle hobj1:

hobj2.Data = 17;
hobj1.Data

ans =

17

Copy Method for Handle Classes
Handle classes can derive copy functionality from the matlab.mixin.Copyable
class. Class designers can investigate the use of this class in their class design.

Reassigning Handle Variables
Reassigning a handle variable produces the same result as reassigning any
MATLAB variable. When you create a new object and assign it to hobj1:

hobj1 = HdClass(3.14);

hobj1 references the new object, not the same object referenced previously
(and still referenced by hobj2).

Clearing Handle Variables
When you clear a handle from the workspace, MATLAB removes the
variable, but does not removed the object referenced by the handle. Therefore,
given hobj1 and hobj2, which both reference the same object, you can clear
either handle without affecting the object:

hobj1.Data = 2^8;

12-29

12 Using Objects

clear hobj1
hobj2
hobj2 =

HdClass handle

Properties:
Data: 256

Methods, Events, Superclasses

If you clear both hobj1 and hobj2, then there are no references to the object
and MATLAB deletes the object and frees the memory used by that object.

Deleting Handle Objects
To remove an object referenced by any number of handles, use delete. Given
hobj1 and hobj2, which both reference the same object, if you delete either
handle, MATLAB deletes the object:

hobj1 = HdClass(8);
hobj2 = hobj1;
delete(hobj1)
hobj2

hobj2 =

deleted HdClass handle

Methods, Events, Superclasses

See “Destroying Objects” on page 12-33 for more information about object
lifecycle.

Modifying Objects
When you pass an object to a function, MATLAB follows pass by value
semantics. This means that MATLAB passes a copy of the object to the
function. If you modify the object in the function, MATLAB modifies only the
copy of the object. The differences in copy behavior between handle and value
classes are important in such cases:

12-30

Copying Objects

• Value class — The function must return the modified copy of the object
to the caller.

• Handle class — The copy refers to the same data as the original object.
Therefore, the function does not need to return the modified copy.

See “Passing Objects to Functions” for more information.

More Information About Handle and Value Classes
For information about handle and value classes for class designers, see “Value
or Handle Class — Which to Use” in the Object-Oriented Programming
documentation.

Testing for Handle or Value Class
If you are writing MATLAB programs that copy objects, you might need to
determine if any given object is a handle or a value. To determine if an object
is a handle object, use the isa function:

isa(obj,'handle')

For example, the containers.Map class creates a handle object:

hobj = containers.Map({'Red Sox','Yankees'}, {'Boston','New York'});

isa(hobj,'handle')

ans =

1

hobj is also a containers.Map object:

isa(hobj,'containers.Map')

ans =

1

If you query the class of hobj, you see that it is a containers.Map object:

class(hobj)

12-31

12 Using Objects

ans =

containers.Map

The class function returns the specific class of an object, whereas isa
returns true for any of the object’s superclasses as well. This behavior is
consistent with the object-oriented concept that an object is a member of all its
superclasses. Therefore, it is true that a containers.Map object is a handle
object and a containers.Map object.

There is no equivalent test for value classes because there is no value base
class. If an object is a value object, isa(object,'handle') returns false
(i.e., logical 0).

See Chapter 10, “Map Containers” for more information on the
containers.Map class.

12-32

Destroying Objects

Destroying Objects

In this section...

“Object Lifecycle” on page 12-33

“Difference Between clear and delete” on page 12-33

Object Lifecycle
An object’s lifecycle ends when:

• You reassign a new value to that variable.

• The object is no longer used in a function.

• Function execution ends.

MATLAB handle classes have a special method called delete that MATLAB
calls when a handle object lifecycle ends.

Calling delete on an object explicitly makes all copies of a handle object
invalid because it destroys the data associated with the object and frees
memory used by deleted objects. MATLAB calls delete automatically so it is
not necessary for you to do so. Classes can redefine the handle class delete
method to perform other cleanup operations, like closing files or saving data.

Deleting a handle object renders all copies invalid:

hobj1 = HdClass(8);
hobj2 = hobj1;
delete(hobj1)
hobj2.Data
Invalid or deleted object.

Difference Between clear and delete
The handle class delete method removes the handle object, but does not
clear the variable name. The clear function removes a variable name, but
does not remove the values to which the variable refers. For example, if you
have two variables that refer to the same handle object, you can clear either
one without affecting the actual object:

12-33

12 Using Objects

hobj = containers.Map({'Red Sox','Yankees'}, {'Boston','New York'});

hobj_copy = hobj;

clear hobj

city = hobj_copy('Red Sox')

city =

Boston

If you call clear on all handle variables that refer to the same handle object,
then you have lost access to the object and MATLAB destroys the object. That
is, when there are no references to an object, the object ceases to exist.

On value objects, you can call clear to remove the variable. However,
MATLAB does not automatically call a value class delete method, if one
exists, when you clear the variable.

12-34

13

Defining Your Own Classes

All MATLAB data types are implemented as object-oriented classes. You
can add data types of your own to your MATLAB environment by creating
additional classes. These user-defined classes define the structure of your
new data type, and the functions, or methods, that you write for each class
define the behavior for that data type.

These methods can also define the way various MATLAB operators, including
arithmetic operations, subscript referencing, and concatenation, apply to the
new data types. For example, a class called polynomial might redefine the
addition operator (+) so that it correctly performs the operation of addition
on polynomials.

With MATLAB classes you can

• Create methods that overload existing MATLAB functionality

• Restrict the operations that are allowed on an object of a class

• Enforce common behavior among related classes by inheriting from the
same parent class

• Significantly increase the reuse of your code

For more information, see “Classes in the MATLAB Language”.

13 Defining Your Own Classes

13-2

Scripts and Functions

• Chapter 14, “Program Files”

• Chapter 15, “Types of Functions”

• Chapter 16, “Function Arguments”

• Chapter 17, “Programming Tips”

14

Program Files

• “Program Development” on page 14-2

• “Working with Functions in Files” on page 14-9

• “Scripts and Functions” on page 14-24

• “Base and Function Workspaces” on page 14-29

• “Share Data Between Workspaces” on page 14-30

• “Calling Functions” on page 14-35

• “Functions Provided By MATLAB” on page 14-44

14 Program Files

Program Development

In this section...

“Overview” on page 14-2

“Creating a Program” on page 14-2

“Getting the Bugs Out” on page 14-3

“Cleaning Up the Program” on page 14-4

“Improving Performance” on page 14-5

“Checking It In” on page 14-6

“Protecting Your Source Code” on page 14-6

Overview
As you write a MATLAB function or script, you save it to a file that has a .m
file extension. There are two types of these files you can write: scripts and
functions. This section covers basic program development, describes how to
write and call scripts and functions, and shows how to pass different types of
data when calling a function.

For more ideas on good programming style, see “Program Development”
on page 17-18 in the MATLAB Programming Tips documentation. The
Programming Tips section is a compilation of useful pieces of information that
can show you alternate and often more efficient ways to accomplish common
programming tasks while also expanding your knowledge of MATLAB.

Creating a Program
You can type in your program code using any text editor. This section focuses
on using the MATLAB Editor/Debugger for this purpose.

The first step in creating a program is to open an editing window. To create a
file for a new function, type the word edit at the MATLAB command prompt.
To edit an existing file, type edit followed by the file name:

edit drawPlot.m

14-2

Program Development

MATLAB opens a new window for entering your program code. As you type in
your program, MATLAB keeps track of the line numbers in the left column.

For more information on the Editor/Debugger, see “Create, Open, Save, and
Close Files”.

Saving the Program
It is usually a good idea to save your program periodically while you are in the
development process. To do this, click File > Save in the Editor/Debugger.
Enter a file name with a .m extension in the Save file as dialog box that
appears and click OK. It is customary and less confusing if you give the file
the same name as the first function in the file.

Running the Program
Before trying to run your program, make sure that its file is on the MATLAB
path. The MATLAB path defines those folders that you want MATLAB to
know about when executing files. The path includes all the folders that
contain functions provided with MATLAB. It should also include any folders
that you use for your own functions.

Use the which function to see if your program is on the path:

which drawPlot
D:\user5\matlab\mywork\drawPlot.m

If not, add its folder to the path using the addpath function:

addpath('D:\user5\matlab\mywork')

Now you can run the program just by typing the name of the file at the
MATLAB command prompt:

drawPlot(xdata, ydata)

Getting the Bugs Out
In all but the simplest programs, you are likely to encounter some type of
unexpected behavior when you run the program for the first time. Program
defects can show up in the form of warning or error messages displayed in the

14-3

14 Program Files

command window, programs that hang (never terminate), inaccurate results,
or some number of other symptoms. This is where the second functionality
of the MATLAB Editor/Debugger becomes useful.

The MATLAB Debugger enables you to examine the inner workings of your
program while you run it. You can stop the execution of your program at any
point and then continue from that point, stepping through the code line by
line and examining the results of each operation performed. You have the
choice of operating the debugger from the Editor window that displays your
program, from the MATLAB command line, or both.

The Debugging Process
You can step through the program right from the start if you want. For
longer programs, you will probably save time by stopping the program
somewhere in the middle and stepping through from there. You can do this
by approximating where the program code breaks and setting a stopping
point (or breakpoint) at that line. Once a breakpoint has been set, start
your program from the MATLAB command prompt. MATLAB opens an
Editor/Debugger window (if it is not already open) showing a green arrow
pointing to the next line to execute.

From this point, you can examine any values passed into the program, or the
results of each operation performed. You can step through the program line
by line to see which path is taken and why. You can step into any functions
that your program calls, or choose to step over them and just see the end
results. You can also modify the values assigned to a variable and see how
that affects the outcome.

To learn about using the MATLAB Debugger, see “Debugging Process and
Features”. Type help debug for a listing of all MATLAB debug functions.

For programming tips on how to debug, see “Debugging” on page 17-21 in the
Programming Tips documentation.

Cleaning Up the Program
Even after your program is bug-free, there are still some steps you can take to
improve its performance and readability. The MATLAB Code Analyzer utility
generates a report that can highlight potential problems in your code. For

14-4

Program Development

example, you might be using the element-wise AND operator (&) where the
short-circuit AND (&&) is more appropriate. You might be using the find
function in a context where logical subscripting would be faster.

MATLAB offers the Code Analyzer and several other reporting utilities to
help you make the finishing touches to your program code. These tools are
described in “Using MATLAB Reports”.

Improving Performance
The MATLAB Profiler generates a report that shows how your program
spends its processing time. For details about using the MATLAB Profiler, see
Profiling for Improving Performance. For tips on other ways to improve the
performance of your programs, see “Techniques for Improving Performance”
on page 20-4.

Three types of reports are available:

• “Summary Report” on page 14-5

• “Detail Report” on page 14-5

• “File Listing” on page 14-6

Summary Report
The summary report provides performance information on your main program
and on every function it calls. This includes how many times each function is
called, the total time spent in that function, along with a bar graph showing
the relative time spent by each function.

Detail Report
When you click a function name in the summary report, MATLAB displays a
detailed report on that function. This report shows the lines of that function
that take up the most time, the time spent executing that line, the percentage
of total time for that function that is spent on that line, and a bar graph
showing the relative time spent on the line.

14-5

14 Program Files

File Listing
The detail report for a function also displays all code for that function. This
listing enables you to view the time-consuming code in the context of the
entire function body. For every line of code that takes any significant time,
additional performance information is provided by the statistics and by the
color and degree of highlighting of the program code.

Checking It In
Source control systems offer a way to manage large numbers of files while
they are under development. They keep track of the work done on these files
as your project progresses, and also ensure that changes are made in a secure
and orderly fashion.

If you have a source control system available, you will probably want to
check your files into the system once they are complete. If further work is
required on one of those files, you just check it back out, make the necessary
modifications, and then check it back in again.

MATLAB provides an interface to external source control systems so that you
can check files in and out directly from your MATLAB session. For more
information, see:

• “Checking Files Into and Out of Source Control from the MATLAB Desktop
on Microsoft Windows”

• “Checking Files Into the Source Control System on UNIX Platforms”

Protecting Your Source Code
Although MATLAB source (.m) code is executable by itself, the contents
of MATLAB source files are easily accessed, revealing design and
implementation details. If you do not want to distribute your proprietary
application code in this format, you can use one of these more secure options
instead:

• Deploy as P-code — Convert some or all of your source code files to a
content-obscured form called a P-code file (from its .p file extension), and
distribute your application code in this format.

14-6

Program Development

• Compile into binary format — Compile your source code files using the
MATLAB Compiler to produce a standalone application. Distribute the
latter to end users of your application.

In general, if you want to run the code as a standalone application outside of
MATLAB, it is best to use the MATLAB Compiler™ to make your code secure
. If you plan to run the code within the MATLAB environment, there is no
need to run the Compiler. Instead, convert to P-code those modules of your
source code that need to be secure.

Building a Content Obscured Format with P-Code
A P-code file behaves the same as the MATLAB source from which it was
produced. The P-code file also runs at the same speed as the source file.
Because the contents of P-code files are purposely obscured, they offer a
secure means of distribution outside of your organization.

Note Because users of P-code files cannot view the MATLAB code, consider
providing diagnostics to enable a user to proceed in the event of an error.

Building the P-Code File. To generate a P-code file, enter the following
command in the MATLAB Command Window:

pcode file1 file2, ...

The command produces the files, file1.p, file2.p, and so on. To convert all
.m source files residing in your current folder to P-code files, use the command:

pcode *.m

See the pcode function reference page for a description of all syntaxes for
generating P-code files.

Invoking the P-Code File. You invoke the resulting P-code file in the same
way you invoke the MATLAB .m source file from which it was derived. For
example, to invoke file myfun.p, type

[out, out2, ...] = myfun(in1, in2, ...);

14-7

14 Program Files

To invoke script myscript.p, type

myscript;

When you call a P-code file, MATLAB gives it execution precedence over its
corresponding .m source file. This is true even if you happen to change the
source code at some point after generating the P-code file. Remember to
remove the .m source file before distributing your code.

Running Older P-Code Files on Later Versions of MATLAB. P-Code files
are designed to be independent of the release under which they were created
and the release in which they are used (backward and forward compatibility).
New and deprecated MATLAB features can be a problem, but it is the same
problem that would exist if you used the original MATLAB input file. To fix
errors of this kind in a P-code file, fix the corresponding MATLAB input file
and create a new P-code file.

P-code files built using MATLAB Version 7.4 and earlier have a different
format than those built with more recent versions of MATLAB. You still can
use these older P-code files when you run MATLAB 7.4 and later, but this
capability could be removed in a future release. MathWorks recommends that
you rebuild any P-code files that were built with MATLAB 7.4 or earlier using
a more recent version of MATLAB, and then redistribute them as necessary.

Building a Standalone Executable
Another way to protect your source code is to build it into a standalone
executable and distribute the executable, along with any other necessary
files, to external customers. You must have the MATLAB Compiler and a
supported C or C++ compiler installed to prepare files for deployment. The
end user, however, does not need MATLAB.

To build a standalone application for your MATLAB application, develop and
debug your application following the usual procedure for MATLAB program
files. Then, generate the executable file or files following the instructions in
“Steps by the Developer to Deploy to End Users” in the MATLAB Compiler
documentation.

14-8

Working with Functions in Files

Working with Functions in Files

In this section...

“Overview” on page 14-9

“Types of Program Files” on page 14-9

“Basic Parts of a Program File” on page 14-10

“Creating a Program File” on page 14-15

“Providing Help for Your Program” on page 14-17

“Cleaning Up When the Function Completes” on page 14-17

Overview
The MATLAB software provides a full programming language that enables
you to write a series of MATLAB statements into a file and then execute
them with a single command. You write your program in an ordinary text
file, giving the file a name of filename.m. The term you use for filename
becomes the new command that MATLAB associates with the program. The
file extension of .m makes this a MATLAB program file.

Types of Program Files
Program files can be scripts that simply execute a series of MATLAB
statements, or they can be functions that also accept input arguments and
produce output.

MATLAB scripts:

• Are useful for automating a series of steps you need to perform many times.

• Do not accept input arguments or return output arguments.

• Store variables in a workspace that is shared with other scripts and with
the MATLAB command line interface.

MATLAB functions:

• Are useful for extending the MATLAB language for your application.

14-9

14 Program Files

• Can accept input arguments and return output arguments.

• Store variables in a workspace internal to the function.

Basic Parts of a Program File
This simple function shows the basic parts of a program file. Any line that
begins with % is not executable:

function f = fact(n) Function definition line
% Compute a factorial value. H1 line
% FACT(N) returns the factorial of N, Help text
% usually denoted by N!

% Put simply, FACT(N) is PROD(1:N). Comment
f = prod(1:n); Function body

This table briefly describes each of these program file parts. Both functions
and scripts can have all of these parts, except for the function definition line
which applies to functions only. The sections that follow the table describe
these parts in greater detail.

File Element Description

Function definition line
(functions only)

Defines the function name, and the number and
order of input and output arguments

H1 line A one line summary description of the program,
displayed when you request help on an entire
folder, or when you use lookfor

Help text A more detailed description of the program,
displayed together with the H1 line when you
request help on a specific function

Function or script body Program code that performs the actual
computations and assigns values to any output
arguments

Comments Text in the body of the program that explains
the internal workings of the program

14-10

Working with Functions in Files

Function Definition Line
The function definition line informs MATLAB that the file contains a function,
and specifies the argument calling sequence of the function. This line contains
the function keyword and must always be the first line of the file, except
for lines that are nonexecutable comments. The function definition line for
the fact function is

��������	
	�	������

�����	��������

��
����

������	��������

��������	����

All MATLAB functions have a function definition line that follows this
pattern.

Function Name. Function names must begin with a letter, can contain any
alphanumeric characters or underscores, and must be no longer than the
maximum allowed length (returned by the function namelengthmax). Because
variables must obey similar rules, you can use the isvarname function to
check whether a function name is valid:

isvarname myfun

Function names also cannot be the same as any MATLAB keyword. Use the
iskeyword function with no inputs to display a list of all keywords.

Although function names can be of any length, MATLAB uses only the first
N characters of the name (where N is the number returned by the function
namelengthmax) and ignores the rest. Hence, it is important to make each
function name unique in the first N characters:

N = namelengthmax
N =

63

14-11

14 Program Files

Note Some operating systems might restrict file names to shorter lengths.

The name of the text file that contains a MATLAB function consists of the
function name with the extension .m appended. For example,

average.m

If the file name and the function definition line name are different, MATLAB
ignores the internal (function) name. Thus, if average.m is the file that
defines a function named computeAverage, you would invoke the function
by typing

average

Note While the function name specified on the function definition line does
not have to be the same as the file name, it is best to use the same name
for both to avoid confusion.

Function Arguments. If the function has multiple output values, enclose
the output argument list in square brackets. Input arguments, if present, are
enclosed in parentheses following the function name. Use commas to separate
multiple input or output arguments. Here is the declaration for a function
named sphere that has three inputs and three outputs:

function [x, y, z] = sphere(theta, phi, rho)

If there is no output, leave the output blank

function printresults(x)

or use empty square brackets:

function [] = printresults(x)

The variables that you pass to the function do not need to have the same
name as the variables in the function definition line.

14-12

Working with Functions in Files

The H1 Line
The H1 line, so named because it is the first help text line, is a comment
line immediately following the function definition line. Because it consists
of comment text, the H1 line begins with a percent sign, %. For the average
function, the H1 line is

% AVERAGE Mean of vector elements.

This is the first line of text that appears when a user types help functionname
at the MATLAB prompt. Further, the lookfor function searches on and
displays only the H1 line. Because this line provides important summary
information about the file, it is important to make it as descriptive as possible.

Help Text
You can create online help for your program files by entering help text on one
or more consecutive comment lines at the start of your program. MATLAB
considers the first group of consecutive lines immediately following the H1
line that begin with % to be the online help text for the function. The first line
without % as the left-most character ends the help.

The help text for the average function is

% AVERAGE(X), where X is a vector, is the mean of vector
% elements. Nonvector input results in an error.

When you type help functionname at the command prompt, MATLAB
displays the H1 line followed by the online help text for that function. The
help system ignores any comment lines that appear after this help block.

Note Help text in a program file can be viewed at the MATLAB command
prompt only (using help functionname). You cannot display this text using
the MATLAB Help browser. You can, however, use the Help browser to
get help on MATLAB functions and also to read the documentation on any
MathWorks products.

14-13

14 Program Files

The Function or Script Body
The function body contains all the MATLAB code that performs computations
and assigns values to output arguments. The statements in the function
body can consist of function calls, programming constructs like flow control
and interactive input/output, calculations, assignments, comments, and
blank lines.

For example, the body of the average function contains a number of simple
programming statements:

[m,n] = size(x);
if (~((m == 1) || (n == 1)) || ...

(m == 1 && n == 1)) % Flow control

error('Input must be a vector') % Error message display
end
y = sum(x)/length(x); % Computation and assignment

Comments
As mentioned earlier, comment lines begin with a percent sign (%). Comment
lines can appear anywhere in a program file, and you can append comments
to the end of a line of code. For example,

% Add up all the vector elements.
y = sum(x) % Use the sum function.

In addition to comment lines, you can insert blank lines anywhere in the
file. Blank lines are ignored. However, a blank line can indicate the end of
the help text entry for a program file.

Block Comments. To write comments that require more than one line, use
the block comment operators, %{ and %}:

%{
This next block of code checks the number of inputs
passed in, makes sure that each input is a valid data
type, and then branches to start processing the data.
%}

14-14

Working with Functions in Files

Note The %{ and %} operators must appear alone on the lines that
immediately precede and follow the block of help text. Do not include any
other text on these lines.

Creating a Program File
You create files for your programs using a text editor. MATLAB provides
a built-in editor, but you can use any text editor you like. Once you have
written and saved the file, you can run the program as you would any other
MATLAB function or command.

The process looks like this:

Using Text Editors
Program files are ordinary text files that you create using a text editor. If you
use the MATLAB Editor/Debugger, open a new file by selecting New > File
from the File menu at the top of the MATLAB Command Window.

Another way to edit a program file is from the MATLAB command line using
the edit function. For example,

edit foo

14-15

14 Program Files

opens the editor on the file foo.m. Omitting a file name opens the editor on
an untitled file.

You can create the fact function shown in “Basic Parts of a Program File” on
page 14-10 by opening your text editor, entering the lines shown, and saving
the text in a file called fact.m in your current folder.

Once you have created this file, here are some things you can:

• List the names of the files in your current folder:

what

• List the contents of file fact.m:

type fact

• Call the fact function:

fact(5)
ans =

120

A Word of Caution on Saving Program Files
Save any files you create and any MathWorks supplied files that you edit
in folders outside of the folder tree in which the MATLAB software is
installed. If you keep your files in any of the installed folders, your files can
be overwritten when you install a new version of MATLAB.

MATLAB installs its software into folders under matlabroot/toolbox. To
see what matlabroot is on your system, type matlabroot at the MATLAB
command prompt.

Also note that locations of files in the matlabroot/toolbox folder tree are
loaded and cached in memory at the beginning of each MATLAB session to

14-16

Working with Functions in Files

improve performance. If you save files to matlabroot/toolbox folders using
an external editor, or if you add or remove files from these folders using file
system operations, enter the commands clear functionname and rehash
toolbox before you use the files in the current session.

For more information, see the rehash function reference page or the section
Toolbox Path Caching.

Providing Help for Your Program
You can provide user information for the programs you write by including a
help text section at the beginning of your program file. (See “Help Text” on
page 14-13).

You can also make help entries for an entire folder by creating a file with the
special name Contents.m that resides in the folder. This file must contain
only comment lines; that is, every line must begin with a percent sign.
MATLAB displays the lines in a Contents.m file whenever you type

help foldername

Contents.m files are optional. If you have a folder that is on the path that
does not contain a Contents.m file, MATLAB displays the first comment
line (the “H1” line) of each .m file in response to typing help foldername. If
you do not want to display any help summaries at all, create an empty an
empty Contents.m file in that folder. When an empty Contents.m file exists,
typing help foldername causes MATLAB to respond with No help found
for foldername..

To get help in creating and validating your Contents.m files, you can use the
Contents Report tool in the Current Folder browser. See “Displaying and
Updating a Report on the Contents of a Folder” for more information.

Cleaning Up When the Function Completes
When you have programmed all that you set out to do in your file, there is
one last step to consider before it is complete. Make sure that you leave your
program environment in a clean state that does not interfere with any other
program code. For example, you might want to

14-17

14 Program Files

• Close any files that you opened for import or export.

• Restore the MATLAB path.

• Lock or unlock memory to prevent or allow erasing MATLAB function
or MEX-files.

• Set your working folder back to its default if you have changed it.

• Make sure global and persistent variables are in the correct state.

MATLAB provides the onCleanup function for this purpose. This function,
when used within any program, establishes a cleanup routine for that
function. When the function terminates, whether normally or in the event of
an error or Ctrl+C, MATLAB automatically executes the cleanup routine.

The following statement establishes a cleanup routine cleanupFun for the
currently running program:

cleanupObj = onCleanup(@cleanupFun);

When your program exits, MATLAB finds any instances of the onCleanup
class and executes the associated function handles. The process of generating
and activating function cleanup involves the following steps:

1 Write one or more cleanup routines for the program under development.
Assume for now that it takes only one such routine.

2 Create a function handle for the cleanup routine.

3 At some point, generally early in your program code, insert a call to the
oncleanup function, passing the function handle.

4 When the program is run, the call to onCleanup constructs a cleanup object
that contains a handle to the cleanup routine created in step 1.

5 When the program ends, MATLAB implicitly clears all objects that are
local variables. This invokes the destructor method for each local object in
your program, including the cleanup object constructed in step 4.

6 The destructor method for this object invokes this routine if it exists. This
perform the tasks needed to restore your programming environment.

14-18

Working with Functions in Files

You can declare any number of cleanup routines for a program file. Each
call to onCleanup establishes a separate cleanup routine for each cleanup
object returned.

If, for some reason, the object returned by onCleanup persists beyond the life
of your program, then the cleanup routine associated with that object is not
run when your function terminates. Instead, it will run whenever the object
is destroyed (e.g., by clearing the object variable).

Your cleanup routine should never rely on variables that are defined outside
of that routine. For example, the nested function shown here on the left
executes with no error, whereas the very similar one on the right fails with
the error, Undefined function or variable 'k'. This results from the
cleanup routine’s reliance on variable k which is defined outside of the nested
cleanup routine:

function testCleanup function testCleanup
k = 3; k = 3;
myFun obj = onCleanup(@myFun);

function myFun function myFun
fprintf('k is %d\n', k) fprintf('k is %d\n', k)
end end

end end

Examples of Cleaning Up a Program Upon Exit

Example 1 — Close Open Files on Exit. MATLAB closes the file with
identifier fid when function openFileSafely terminates:

function openFileSafely(fileName)
fid = fopen(fileName, 'r');
c = onCleanup(@()fclose(fid));

s = fread(fid);
.
.
.

end

14-19

14 Program Files

Example 2 — Maintain the Selected Folder. This example preserves the
current folder whether functionThatMayError returns an error or not:

function changeFolderSafely(fileName)
currentFolder = pwd;
c = onCleanup(@()cd(currentFolder));

functionThatMayError;
end % c executes cd(currentFolder) here.

Example 3 — Close Figure and Restore MATLAB Path. This example
extends the MATLAB path to include files in the toolbox\images folders, and
then displays a figure from one of these folders. After the figure displays,
the cleanup routine restore_env closes the figure and restores the path to
its original state:

function showImageOutsidePath(imageFile)
fig1 = figure;
imgpath = genpath([matlabroot '\toolbox\images']);

% Define the cleanup routine.
cleanupObj = onCleanup(@()restore_env(fig1, imgpath));

% Modify the path to gain access to the image file,
% and display the image.
addpath(imgpath);
rgb = imread(imageFile);
fprintf('\n Opening the figure %s\n', imageFile);
image(rgb);
pause(2);

% This is the cleanup routine.
function restore_env(fighandle, newpath)
disp ' Closing the figure'
close(fighandle);
pause(2)

disp ' Restoring the path'
rmpath(newpath);
end

end

14-20

Working with Functions in Files

Run the function as shown here. You can verify that the path has been
restored by comparing the length of the path before and after running the
function:

origLen = length(path);

showImageOutsidePath('greens.jpg')
Opening the figure greens.jpg
Closing the figure
Restoring the path

currLen = length(path);
currLen == origLen
ans =

1

Retrieving Information About the Cleanup Routine
In Example 3 shown above, the cleanup routine and data needed to call it are
contained in a handle to an anonymous function:

@()restore_env(fig1, imgpath)

The details of that handle are then contained within the object returned by
the onCleanup function:

cleanupObj = onCleanup(@()restore_env(fig1, imgpath));

You can access these details using the task property of the cleanup object
as shown here. (Modify the showImageOutsidePath function by adding the
following code just before the comment line that says, “% This is the
cleanup routine.”)

disp ' Displaying information from the function handle:'
task = cleanupObj.task;
fun = functions(task)
wsp = fun.workspace{2,1}
fprintf('\n');
pause(2);

14-21

14 Program Files

Run the modified function to see the output of the functions command and
the contents of one of the workspace cells:

showImageOutsidePath('greens.jpg')

Opening the figure greens.jpg
Displaying information from the function handle:
fun =

function: '@()restore_env(fig1,imgpath)'
type: 'anonymous'
file: 'c:\work\g6.m'

workspace: {2x1 cell}
wsp =

imageFile: 'greens.jpg'
fig1: 1

imgpath: [1x3957 char]
cleanupObj: [1x1 onCleanup]

rgb: [300x500x3 uint8]
task: @()restore_env(fig1,imgpath)

Closing the figure
Restoring the path

Using onCleanup Versus try-catch
Another way to run a cleanup routine when a function terminates
unexpectedly is to use a try-catch statement. There are limitations to using
this technique however. If the user ends the program by typing Ctrl+C,
MATLAB immediately exits the try block, and the cleanup routine never
executes. The cleanup routine also does not run when you exit the function
normally.

The following program cleans up if an error occurs, but not in response to
Ctrl+C:

function cleanupByCatch
try

pause(10);
catch

disp(' Collecting information about the error')

14-22

Working with Functions in Files

disp(' Executing cleanup tasks')
end

Unlike the try-catch statement, the onCleanup function responds not only
to a normal exit from your program and any error that might be thrown, but
also to Ctrl+C. This next example replaces the try-catch with onCleanup:

function cleanupByFunc
obj = onCleanup(@()...

disp(' Executing cleanup tasks'));
pause(10);

onCleanup in Scripts
onCleanup does not work in scripts as it does in functions. In functions, the
cleanup object is stored in the function workspace. When the function exits,
this workspace is cleared thus executing the associated cleanup routine.
In scripts, the cleanup object is stored in the base workspace (that is, the
workspace used in interactive work done at the command prompt). Because
exiting a script has no effect on the base workspace, the cleanup object is
not cleared and the routine associated with that object does not execute. To
use this type of cleanup mechanism in a script, you would have to explicitly
clear the object from the command line or another script when the first script
terminates.

14-23

14 Program Files

Scripts and Functions

In this section...

“Scripts” on page 14-24

“Functions” on page 14-25

“Types of Functions” on page 14-26

“Organizing Your Functions” on page 14-27

“Identifying Dependencies” on page 14-27

Scripts
Scripts are the simplest kind of program file because they have no input
or output arguments. They are useful for automating series of MATLAB
commands, such as computations that you have to perform repeatedly from
the command line.

For example, these statements calculate rho for several trigonometric
functions of theta, then create a series of polar plots:

% A script to produce % Comment lines
% "flower petal" plots
theta = -pi:0.01:pi; % Computations
rho(1,:) = 2 * sin(5 * theta) .^ 2;
rho(2,:) = cos(10 * theta) .^ 3;
rho(3,:) = sin(theta) .^ 2;
rho(4,:) = 5 * cos(3.5 * theta) .^ 3;
for k = 1:4

polar(theta, rho(k,:)) % Graphics output
pause

end

Try entering these commands in a file called petals.m. This file is now a
MATLAB script. Typing petals at the MATLAB command line executes
the statements in the script.

After the script displays a plot, press Enter or Return to move to the next
plot. There are no input or output arguments; petals creates the variables it

14-24

Scripts and Functions

needs in the MATLAB workspace. When execution completes, the variables
(k, theta, and rho) remain in the workspace. To see a listing of them, enter
whos at the command prompt.

Scripts share the base workspace with your interactive MATLAB session
and with other scripts. For more information, see “Base and Function
Workspaces” on page 14-29.

Functions
The main difference between a script and a function is that a function accepts
input from and returns output to its caller, whereas scripts do not. You define
MATLAB functions in a file that begins with a line containing the function
key word. You cannot define a function within a script file or at the MATLAB
command line.

Functions always begin with a function definition line and end either with the
first matching end statement, the occurrence of another function definition
line, or the end of the file, whichever comes first. Using end to mark the
end of a function definition is required only when the function being defined
contains one or more nested functions.

The average function is a simple file that calculates the average of the
elements in a vector:

function y = average(x)
% AVERAGE Mean of vector elements.
% AVERAGE(X), where X is a vector, is the mean of vector
% elements. Nonvector input results in an error.
[m,n] = size(x);
if (~((m == 1) | (n == 1)) | (m == 1 & n == 1))

error('Input must be a vector')
end
y = sum(x)/length(x); % Actual computation

Try entering these commands in a file called average.m. The average
function accepts a single input argument and returns a single output
argument. To call the average function, enter

z = 1:99;

14-25

14 Program Files

average(z)
ans =

50

Each function in a file has an area of memory, separate from the MATLAB
base workspace, in which it operates. This area, called the function workspace,
gives each function its own workspace context. For more information, see
“Base and Function Workspaces” on page 14-29.

Types of Functions
MATLAB provides the following types of functions. Each function type is
described in more detail in a later section of this documentation:

• The primary function is the first function in a program file and typically
contains the main program.

• Subfunctions act as subroutines to the main function. You can also use
them to define multiple functions within a single file.

• Nested functions are functions defined within another function. They can
help to improve the readability of your program and also give you more
flexible access to variables in the file.

• Anonymous functions provide a quick way of making a function from any
MATLAB expression. You can compose anonymous functions either from
within another function or at the MATLAB command prompt.

• Overloaded functions are useful when you need to create a function that
responds to different types of inputs accordingly. They are similar to
overloaded functions in any object-oriented language.

• Private functions give you a way to restrict access to a function. You can
call them only from a function in the parent folder.

You might also see the term function functions in the documentation. This is
not really a separate function type. The term function functions refers to any
functions that accept another function as an input argument. You can pass a
function to another function using a function handle.

14-26

Scripts and Functions

Organizing Your Functions
When writing and saving your functions, you have several options on how to
organize the functions within the file, and also where in your folder structure
you want to save them. Be sure to place your function files either in the folder
in which you plan to run MATLAB, or in some other folder that is on the
MATLAB path.

Use this table as a general guide when creating and saving your files:

If your program or routine . . . then . . .

Requires only one function Make it a single (primary) function
in the file.

Also requires subroutines Make each subroutine a subfunction
within same file as the primary.

Is for use only in the context of a
certain function

Nest it within the other function.
Nested functions also offer wider
access to variables within the
function.

Is a constructor or method of a
MATLAB class

Put the file in a MATLAB class
folder.

Is to have limited access Put the file in a private subfolder.

Is part of a group of similar functions
or classes

Put the file in a package subfolder.

If necessary, you can work around some of the constraints regarding function
access by using function handles. You might find this useful when debugging
your functions.

Identifying Dependencies
If you need to know what other functions and scripts your program is
dependent upon, use one of the techniques described below.

Simple Display of Program File Dependencies
For a simple display of all program files referenced by a particular function,
follow these steps:

14-27

14 Program Files

1 Type clear functions to clear all functions from memory (see Note below).

Note clear functions does not clear functions locked by mlock. If you
have locked functions (which you can check using inmem) unlock them with
munlock, and then repeat step 1.

2 Execute the function you want to check. Note that the function arguments
you choose to use in this step are important, because you can get different
results when calling the same function with different arguments.

3 Type inmem to display all program files that were used when the function ran.
If you want to see what MEX-files were used as well, specify an additional
output:

[mfiles, mexfiles] = inmem

Detailed Display of Program File Dependencies
For a much more detailed display of dependent function information, use the
depfun function. In addition to program files, depfun shows which built-ins
and classes a particular function depends on:

[list, builtins, classes] = depfun('strtok.m');

list
list =

'D:\matlabR14\toolbox\matlab\strfun\strtok.m'
'D:\matlabR14\toolbox\distcomp\toChar.m'
'D:\matlabR14\toolbox\matlab\datafun\prod.m'
'D:\matlabR14\toolbox\matlab\datatypes\@opaque\char.m'

.

.

.

14-28

Base and Function Workspaces

Base and Function Workspaces
This topic explains the differences between the base workspace and function
workspaces, including workspaces for local functions (sometimes called
subfunctions), nested functions, and scripts.

The base workspace stores variables that you create at the command line.
This includes any variables that scripts create, assuming that you run the
script from the command line or from the Editor. Variables in the base
workspace exist until you clear them or end your MATLAB session.

Functions do not use the base workspace. Every function has its own function
workspace. Each function workspace is separate from the base workspace and
all other workspaces to protect the integrity of the data. Even local functions
in a common file have their own workspaces. Variables specific to a function
workspace are called local variables. Typically, local variables do not remain
in memory from one function call to the next.

When you call a script from a function, the script uses the function workspace.

Like local functions, nested functions have their own workspaces. However,
these workspaces are unique in two significant ways:

• Nested functions can access and modify variables in the workspaces of the
functions that contain them.

• All of the variables in nested functions or the functions that contain them
must be explicitly defined. That is, you cannot call a function or script
that assigns values to variables unless those variables already exist in the
function workspace.

Related
Examples

• “Share Data Between Workspaces” on page 14-30

More
About

• “Nested Functions” on page 15-16

14-29

14 Program Files

Share Data Between Workspaces
This topic shows how to share variables between workspaces or allow them to
persist between function executions.

In most cases, variables created within a function are local variables known
only within that function. Local variables are not available at the command
line or to any other function. However, there are several ways to share data
between functions or workspaces.

In this section...

“Best Practice: Passing Arguments” on page 14-30

“Nested Functions” on page 14-31

“Persistent Variables” on page 14-32

“Global Variables” on page 14-32

“Evaluating in Another Workspace” on page 14-33

Best Practice: Passing Arguments
The most secure way to extend the scope of a function variable is to use
function input and output arguments, which allow you to pass values of
variables.

For example, create two functions, update1 and update2, that share and
modify an input value. update2 can be a local function in the file update1.m,
or can be a function in its own file, update2.m.

function y1 = update1(x1)
y1 = 1 + update2(x1);

function y2 = update2(x2)
y2 = 2 * x2;

Call the update1 function from the command line and assign to variable Y in
the base workspace:

X = [1,2,3];
Y = update1(X)

14-30

Share Data Between Workspaces

Y =
3 5 7

Nested Functions
A nested function has access to the workspaces of all functions in which it is
nested. So, for example, a nested function can use a variable (in this case, x)
that is defined in its parent function:

function primaryFx
x = 1;
nestedFx;

function nestedFx
x = x + 1;

end
end

When parent functions do not use a given variable, the variable remains
local to the nested function. For example, in this version of primaryFx, the
two nested functions have their own versions of x that cannot interact with
each other.

function primaryFx
nestedFx1;
nestedFx2;

function nestedFx1
x = 1;

end

function nestedFx2
x = 2;

end
end

For more information, see “Variable Scope in Nested Functions” on page 15-19.

14-31

14 Program Files

Persistent Variables
When you declare a variable within a function as persistent, the variable
retains its value from one function call to the next. Other local variables
retain their value only during the current execution of a function. Persistent
variables are equivalent to static variables in other programming languages.

Declare variables using the persistent keyword before you use them.
MATLAB initializes persistent variables to an empty matrix, [].

For example, define a function in a file named findSum.m that initializes a
sum to 0, and then adds to the value on each iteration.

function findSum(inputvalue)
persistent SUM_X

if isempty(SUM_X)
SUM_X = 0;

end
SUM_X = SUM_X + inputvalue;

When you call the function, the value of SUM_X persists between subsequent
executions.

These operations clear the persistent variables for a function:

• clear all

• clear functionname

• Editing the function file

To prevent clearing persistent variables, lock the function file using mlock.

Global Variables
Global variables are variables that you can access from functions or from
the command line. They have their own workspace, which is separate from
the base and function workspaces.

However, global variables carry notable risks. For example:

14-32

Share Data Between Workspaces

• Any function can access and update a global variable. Other functions that
use the variable might return unexpected results.

• If you unintentionally give a “new” global variable the same name as an
existing global variable, one function can overwrite the values expected by
another. This error is difficult to diagnose.

Use global variables sparingly, if at all.

If you use global variables, declare them using the global keyword before you
access them within any particular location (function or command line). For
example, create a function in a file called falling.m:

function h = falling(t)
global GRAVITY
h = 1/2*GRAVITY*t.^2;

Then, enter these commands at the prompt:

global GRAVITY
GRAVITY = 32;
y = falling((0:.1:5)');

The two global statements make the value assigned to GRAVITY at the
command prompt available inside the function. However, as a more robust
alternative, redefine the function to accept the value as an input:

function h = falling(t,gravity)
h = 1/2*gravity*t.^2;

Then, enter these commands at the prompt:

GRAVITY = 32;
y = falling((0:.1:5)',GRAVITY);

Evaluating in Another Workspace
The evalin and assignin functions allow you to evaluate commands or
variable names from strings and specify whether to use the current or base
workspace.

Like global variables, these functions carry risks of overwriting existing data.
Use them sparingly.

14-33

14 Program Files

evalin and assignin are sometimes useful for callback functions in graphical
user interfaces to evaluate against the base workspace. For example, create a
list box of variable names from the base workspace:

function listBox
figure;
lb = uicontrol('Style','listbox','Position',[10 10 100 100],...

'Callback',@update_listBox);
update_listBox(lb)

function update_listBox(src,~)
vars = evalin('base','who');
set(src,'String',vars)

For other programming applications, consider argument passing and the
techniques described in “Alternatives to the eval Function” on page 2-108.

More
About

• “Base and Function Workspaces” on page 14-29

14-34

Calling Functions

Calling Functions

In this section...

“What Happens When You Call a Function” on page 14-35

“Function Precedence Order” on page 14-35

“Resolving Difficulties In Calling Functions” on page 14-38

“Calling External Functions” on page 14-43

“Running External Programs” on page 14-43

What Happens When You Call a Function
When you call a function from either the command line or from within another
program file, MATLAB parses the function into pseudocode and stores it in
memory. This prevents MATLAB from having to reparse a function each time
you call it during a session. The pseudocode remains in memory until you
clear it using the clear function, or until you quit MATLAB.

Clearing Functions from Memory
You can use clear in any of the following ways to remove functions from the
MATLAB workspace.

Syntax Description

clear functionname Remove specified function from workspace.

clear functions Remove all compiled functions.

clear all Remove all variables and functions.

Function Precedence Order
This topic explains how MATLAB determines which function to call when
multiple functions in the current scope have the same name. The current
scope includes the current file, an optional private subfolder relative to the
currently running function, the current folder, and the MATLAB path.

MATLAB uses this precedence order:

14-35

14 Program Files

1 Variables

Before assuming that a name matches a function, MATLAB checks for a
variable with that name in the current workspace.

Note If you create a variable with the same name as a function, MATLAB
cannot run that function until you clear the variable from memory.

2 Nested functions within the current function

3 Local functions within the current file

4 Private functions

Private functions are functions in a subfolder named private that is
immediately below the folder of the currently running file.

5 Class constructors in @ folders

MATLAB uses class constructors to create a variety of objects (such as
timeseries or audioplayer), and you can define your own classes using
object-oriented programming. For example, if you create a class folder
@polynom and a constructor function @polynom/polynom.m, the constructor
takes precedence over other functions named polynom.m anywhere on the
path.

6 Overloaded methods

Overloading refers to intentionally reusing the same name. Overloaded
methods typically implement similar functionality for different data
types or classes. MATLAB checks the classes of the input arguments to
determine which method to use.

7 Functions in the current folder

8 Functions elsewhere on the path, in order of appearance

When determining the precedence of functions within the same folder,
MATLAB considers the file type, in this order:

14-36

Calling Functions

1 Built-in function

2 MEX-function

3 Simulink® model, with file types in this order:

a SLX file

b MDL file

4 P-file (that is, an encoded program file with a .p extension)

5 Program file with a .m extension

For example, if MATLAB finds a .m file and a P-file with the same name
in the same folder, it uses the P-file. Because P-files are not automatically
regenerated, make sure that you regenerate the P-file whenever you edit
the program file.

To determine the function MATLAB calls for a particular input, include the
function name and the input in a call to the which function. For example,
determine the location of the max method that MATLAB calls for double
and int8 values:

testval = 10;
which max(testval)

built-in (matlabroot\toolbox\matlab\datafun\@double\max)
% double method

testval = int8(10);
which max(testval)

built-in (matlabroot\toolbox\matlab\datafun\@int8\max)
% int8 method

For more information, see:

• “What Is the Search Path?”

• Variables

• “Nested Functions” on page 15-16

14-37

14 Program Files

• “Subfunctions” on page 15-33

• “Private Functions” on page 15-35

Resolving Difficulties In Calling Functions
The two most common problems related to invoking functions in MATLAB are:

• “Conflicting Function and Variable Names” on page 14-38

• “Undefined Functions or Variables” on page 14-38

Conflicting Function and Variable Names
MATLAB throws an error if a variable and function have been given the same
name and there is insufficient information available for MATLAB to resolve
the conflict. You may see an error message something like the following:

Error: <functionName> was previously used as a variable,
conflicting with its use here as the name of a function
or command.

where <functionName> is the name of the function.

Certain uses of the eval and load functions can also result in a similar
conflict between variable and function names. For more information, see:

• “Troubleshooting: Loading Variables within a Function”

• “Alternatives to the eval Function” on page 2-108

Undefined Functions or Variables
You may encounter the following error message, or something similar, while
working with functions or variables in MATLAB:

??? Undefined function or variable 'x'.

These errors usually indicate that MATLAB cannot find a particular variable
or MATLAB program file in the current directory or on the search path. The
root cause is likely to be one of the following:

• The name of the function has been misspelled.

14-38

Calling Functions

• The function name and name of the file containing the function are not
the same.

• The toolbox to which the function belongs is not installed.

• The search path to the function has been changed.

• The function is part of a toolbox that you do not have a license for.

Follow the steps described in this section to resolve this situation.

Verify that You Have the Correct Spelling of the Function Name. One
of the first things to check when you are unable to invoke a function is the
spelling of the function name. Especially with longer function names or
names containing similar characters (e.g., letter l and numeral one), it is easy
to make an error that is not easily detected.

An unrecognized function name may also be the result of case mismatch. For
example, the name of the MATLAB function accumarray contains lowercase
letters only. The following command fails because it includes an uppercase
letter in the function name:

accumArray
??? Undefined function or variable 'accumArray'.

Using the alphabetical or categorized function lists in the MATLAB Help
Browser can help you find the correct spelling.

Make Sure the Function Name Matches the File Name. You establish
the name for a function when you write its function definition line. This name
should always match the name of the file you save it to. For example. if you
create a function named curveplot,

function curveplot(xVal, yVal)
- program code -

then you should name the file containing that function curveplot.m. If you
create a pcode file for the function, then name that file curveplot.p. In the
case of conflicting function and file names, the file name overrides the name
given to the function. In this example, if you save the curveplot function to a
file named curveplotfunction.m, then attempts to invoke the function using
the function name will fail:

14-39

14 Program Files

curveplot
??? Undefined function or variable 'curveplot'.

If you encounter this problem, change either the function name or file name
so that they are the same. If you have difficulty locating the file that uses this
function, use the MATLAB Find Files utility as follows:

1 Open the Find Files dialog box by clicking Edit > Find Files in MATLAB.

2 Under Find files named: enter *.m

3 Under Find files containing text: enter the function name.

4 Click the Find button

Make Sure the Toolbox Is Installed. If you are unable to use a built-in
function from MATLAB or its toolboxes, make sure that the function is
installed. If you do not know which toolbox supports the function you need,
reference the following list:

14-40

Calling Functions

http://www.mathworks.com/support/functions/alpha_list.html

Once you know which toolbox the function belongs to, use the ver function to
see which toolboxes are installed on the system from which you run MATLAB.
The ver function displays a list of all currently installed MathWorks products.
If you can locate the toolbox you need in the output displayed by ver, then
the toolbox is installed. For help with installing MathWorks products, see the
Installation Guide documentation.

If you do not see the toolbox and you believe that it is installed, then perhaps
the MATLAB path has been set incorrectly. Go on to the next section.

Verify the Path Used to Access the Function. This step resets the path to
the default. Because MATLAB stores the toolbox information in a cache file,
you will need to first update this cache and then reset the path. To do this,

1 Go to the File menu and select Preferences...

2 Go to the General heading. Click the button Update Toolbox Path
Cache and press OK.

3 Go to the File menu and select Set Path...

4 Click Default, and a small dialog box opens warning that you will lose your
current path settings if you proceed. Click Yes if you decide to proceed, and
then click OK and then Save to finish.

(If you have added any custom paths to MATLAB, you will need to restore
those later)

Run ver again to see if the toolbox is installed. If not, you may need to
reinstall this toolbox to use this function. See the Related Solution 1-1CBD3,
"How do I install additional toolboxes into my existing MATLAB" for more
information about installing a toolbox.

Once ver shows your toolbox, run the following command to see if you can
find the function:

which -all <functionname>

14-41

http://www.mathworks.com/support/functions/alpha_list.html
http://www.mathworks.com/support/solutions/en/data/1-1CBD3/?solution=1-1CBD3

14 Program Files

replacing <functionname> with the name of the function. You should be
presented with the path(s) of the function file. If you get a message indicating
that the function name was not found, you may need to reinstall that toolbox
to make the function active.

Verify that Your License Covers The Toolbox. If you receive the error
message “Has no license available”, there is a licensing related issue
preventing you from using the function. To find the error that is occurring,
you can use the following command:

license checkout <toolbox_license_key_name>

replacing <toolbox_license_key_name> with the proper key name for the
toolbox that contains your function. To find the license key name, look at the
INCREMENT lines in your license file. For information on how to find your
license file see the related solution: 1-63ZIR6,"Where are the license files
for MATLAB located?”

The license key names of all the toolboxes are located after each INCREMENT
tag in the license.dat file. For example:

INCREMENT MATLAB MLM 17 00-jan-0000 0 k
B454554BADECED4258 \HOSTID=123456 SN=123456

If your license.dat file has no INCREMENT lines, refer to your license
administrator for them. For example, to test the licensing for Symbolic Math
Toolbox, you would run the following command:

license checkout Symbolic_Toolbox

A correct testing gives the result "ANS=1". An incorrect testing results in an
error from the license manager. You can either troubleshoot the error by
looking up the license manager error here:

http://www.mathworks.com/support/install.html

or you can contact the Installation Support Team with the error here:

http://www.mathworks.com/support/contact_us/index.html

14-42

http://www.mathworks.co.kr/support/solutions/en/data/1-63ZIR6/index.html?solution=1-63ZIR6
http://www.mathworks.co.kr/support/solutions/en/data/1-63ZIR6/index.html?solution=1-63ZIR6

Calling Functions

When contacting support, provide your license number, your MATLAB
version, the function you are using, and the license manager error (if
applicable).

Calling External Functions
The MATLAB external interface offers a number of ways to run external
functions from MATLAB. This includes programs written in C or Fortran,
methods invoked on Sun Java or COM (Component Object Model) objects,
functions that interface with serial port hardware, and functions stored in
shared libraries.

Running External Programs
For information on how to invoke operating systems commands or execute
programs that are external to MATLAB, see Running External Programs.

14-43

14 Program Files

Functions Provided By MATLAB

In this section...

“Overview” on page 14-44

“Functions” on page 14-44

“Built-In Functions” on page 14-45

“Overloaded MATLAB Functions” on page 14-46

“Internal Utility Functions” on page 14-47

Overview
Many of the functions provided with the MATLAB software are implemented
as program files just like the files you create with MATLAB. Other MATLAB
functions are precompiled executable programs called built-ins that run much
more efficiently. Many MATLAB functions are also overloaded so that they
handle different classes appropriately.

Functions
If you look in the subfolders of the toolbox\matlab folder, you can find
the sources to many of the functions supplied with MATLAB. Locate your
toolbox\matlab folder by typing

dir([matlabroot '\toolbox\matlab\'])

Any MATLAB functions that you write are just like any other functions coded
with MATLAB. When one of these functions is called, MATLAB parses and
executes each line of code in the file. It saves the parsed version of the function
in memory, eliminating parsing time on any further calls to this function.

Identifying Functions
To find out if a function is implemented with a program file, use the exist
function. The exist function searches for the name you enter on the MATLAB
path and returns a number identifying the source. If the source is a file with a
.m file extension, then exist returns the number 2. This example identifies
the source for the repmat function as a program file:

14-44

Functions Provided By MATLAB®

exist repmat
ans =

2

The exist function also returns 2 for files that have a file type unknown to
MATLAB. However, if you invoke exist on a MATLAB function name, the
file type is known to MATLAB and returns 2 only on program files.

Viewing the Source Code
One advantage of functions implemented as files is that you can look at the
source code. This can help when you need to understand why the function
returns a value you did not expect, if you need to figure out how to code
something in MATLAB that is already coded in a function, or perhaps to help
you create a function that overloads one of the MATLAB functions.

To find the source code for any MATLAB function, use which. For example,

which repmat

returns the full path for the program file:

D:\MATLAB\toolbox\matlab\elmat\repmat.m

Built-In Functions
Functions that are frequently used or that can take more time to execute are
often implemented as executable files. These functions are called built-ins.

Unlike MATLAB program file functions, you cannot see the source code for
built-ins. Although most built-in functions do have a program file associated
with them, this file is there mainly to supply the help documentation for the
function. For example, view the program file for the reshape function:

type reshape.m

The file contains only help text.

14-45

14 Program Files

Identifying Built-In Functions
As with program file functions, you can identify which functions are built-ins
using the exist function. This function identifies built-ins by returning the
number 5:

exist reshape
ans =

5

Forcing a Built-In Call
If you overload any of the MATLAB built-in functions to handle a specific
class, then MATLAB always calls the overloaded function on that type. If, for
some reason, you need to call the built-in version, you can override the usual
calling mechanism using the builtin function. The expression

builtin('reshape', arg1, arg2, ..., argN);

forces a call to the MATLAB built-in function, reshape, passing the arguments
shown even though an overload exists for the class in this argument list.

Note With the exception of overloading, you should not create a MATLAB
program file that has the same name as a MATLAB built-in. Because built-in
functions have a higher precedence than most other types of program files
(with the exception of private and subfunctions), MATLAB does not recognize
functions that share the same name with a built-in.

Overloaded MATLAB Functions
An overloaded function is an additional implementation of an existing function
that is designed specifically to handle a certain class. When you pass an
argument of this type in a call to the function, MATLAB looks for the function
implementation that handles that type and executes that function code.

Each overloaded MATLAB function has a file on the MATLAB path. The files
for a certain class reside in a folder named with an @ sign followed by the
class name. For example, if you need to plot expressions of class polynom in
a manner that is unique to that class, you can overload the MATLAB plot

14-46

Functions Provided By MATLAB®

function. To do this, create your own plotting function plot.m specifically for
use with objects of the polynom class. Then, create a folder called @polynom,
and store your own version of plot.m in that folder.

You can add your own overloads to any function. Just create a class folder for
the class you want to support for that function, and create a file that handles
the type in a manner different from the default. See Defining Classes —
Syntax and Developing Classes — Typical Workflow.

When you use the which command with the -all option, MATLAB returns
all occurrences of the file you are looking for. This is an easy way to find
functions that are overloaded:

which -all set % Show all implementations for 'set'

Internal Utility Functions
MathWorks reserves the use of packages named internal for utility functions
used by internal MATLAB code. Functions that belong to an internal
package are intended for MathWorks use only. Using functions that belong
to an internal package is strongly discouraged. These functions are not
guaranteed to work in a consistent manner from one release to the next. In
fact, any of these functions and classes could be removed from the MATLAB
software in any subsequent release without notice and without documentation
in the product release notes.

Any function called with a syntax that begins with the package name
internal is an internal function. For example,

internal.matlab.functionname

Any function on the MATLAB path that resides at any level under a folder
named +internal is an internal function. For example,

matlab\toolbox\matlab\+internal\functionname

14-47

14 Program Files

14-48

15

Types of Functions

• “Overview of MATLAB Function Types” on page 15-2

• “Anonymous Functions” on page 15-3

• “Primary Functions” on page 15-15

• “Nested Functions” on page 15-16

• “Subfunctions” on page 15-33

• “Private Functions” on page 15-35

• “Overloaded Functions” on page 15-37

15 Types of Functions

Overview of MATLAB Function Types
There are essentially two ways to create a new function for your MATLAB
application: in a command entered at run-time, or in a file saved to permanent
storage.

The command-oriented function, called an anonymous function, is relatively
brief in its content. It consists of a single MATLAB statement that can
interact with multiple input and output arguments. The benefit of using
anonymous functions is that you do not have to edit and maintain a file for
functions that require only a brief definition.

There are several types of functions that you write and execute as a file.
The most basic of these are primary functions and subfunctions. Primary
functions are visible to other functions outside of the file they are defined
in, while subfunctions, generally speaking, are not. That is, you can call a
primary function from an anonymous function or from a function defined in a
separate file, but you can call a subfunction only from functions within the
same file. (See the Description section of the function_handle reference page
for information on making a subfunction externally visible.)

Two specific types of primary functions are the private and overloaded
function. Private functions are visible only to a limited group of other
functions. This type of function can be useful if you want to limit access to a
function, or when you choose not to expose the implementation of a function.
Overloaded functions act the same way as overloaded functions in most
computer languages. You can create multiple implementations of a function
so that each responds accordingly to different types of inputs.

The last type of MATLAB function is the nested function. Nested functions
are not an independent function type; they exist within the body of one of the
other types of functions discussed here (with the exception of anonymous
functions), and also within other nested functions.

15-2

Anonymous Functions

Anonymous Functions

In this section...

“Constructing an Anonymous Function” on page 15-3

“Arrays of Anonymous Functions” on page 15-6

“Outputs from Anonymous Functions” on page 15-7

“Variables Used in the Expression” on page 15-8

“Examples of Anonymous Functions” on page 15-11

Constructing an Anonymous Function
Anonymous functions give you a quick means of creating simple functions
without having to store your function to a file each time. You can construct an
anonymous function either at the MATLAB command line or in any function
or script.

The syntax for creating an anonymous function from an expression is

fhandle = @(arglist) expr

Starting from the right of this syntax statement, the term expr represents the
body of the function: the code that performs the main task your function is to
accomplish. This consists of any single, valid MATLAB expression. Next is
arglist, which is a comma-separated list of input arguments to be passed to
the function. These two components are similar to the body and argument list
components of any function.

Leading off the entire right side of this statement is an @ sign. The @ sign is
the MATLAB operator that constructs a function handle. Creating a function
handle for an anonymous function gives you a means of invoking the function.
It is also useful when you want to pass your anonymous function in a call to
some other function. The @ sign is a required part of an anonymous function
definition.

15-3

15 Types of Functions

Note Function handles not only provide access to anonymous functions. You
can create a function handle to any MATLAB function. The constructor uses a
different syntax: fhandle = @functionname (e.g., fhandle = @sin). To find
out more about function handles, see Chapter 9, “Function Handles”.

The syntax statement shown above constructs the anonymous function,
returns a handle to this function, and stores the value of the handle in
variable fhandle. You can use this function handle in the same way as any
other MATLAB function handle.

Simple Example
The statement below creates an anonymous function that finds the square of
a number. When you call this function, MATLAB assigns the value you pass
in to variable x, and then uses x in the equation x.^2:

sqr = @(x) x.^2;

The @ operator constructs a function handle for this function, and assigns the
handle to the output variable sqr. As with any function handle, you execute
the function associated with it by specifying the variable that contains the
handle, followed by a comma-separated argument list in parentheses. The
syntax is

fhandle(arg1, arg2, ..., argN)

To execute the sqr function defined above, type

a = sqr(5)
a =

25

Because sqr is a function handle, you can pass it in an argument list to other
functions. The code shown here passes the sqr anonymous function to the
MATLAB quad function to compute its integral from zero to one:

quad(sqr, 0, 1)
ans =

0.3333

15-4

Anonymous Functions

A Two-Input Example
As another example, you could create the following anonymous function that
uses two input arguments, x and y. Variables A and B are already defined:

A = [2 3 4]; B = [5 6 7];
sumAxBy = @(x, y) (A*x + B*y);

whos sumAxBy
Name Size Bytes Class

sumAxBy 1x1 16 function_handle

To call this function, assigning 5 to x and 7 to y, type

sumAxBy(5, 7)

Evaluating With No Input Arguments
For anonymous functions that do not take any input arguments, construct the
function using empty parentheses for the input argument list:

t = @() datestr(now);

Also use empty parentheses when invoking the function:

t()

ans =
04-Sep-2003 10:17:59

You must include the parentheses. If you type the function handle name
with no parentheses, MATLAB just identifies the handle; it does not execute
the related function:

t

t =
@() datestr(now)

15-5

15 Types of Functions

Arrays of Anonymous Functions
To store multiple anonymous functions in an array, use a cell array. The
example shown here stores three simple anonymous functions in cell array A:

A = {@(x)x.^2, @(y)y+10, @(x,y)x.^2+y+10}
A =

@(x)x.^2 @(y)y+10 @(x,y)x.^2+y+10

Execute the first two functions in the cell array by referring to them with the
usual cell array syntax, A{1} and A{2}:

A{1}(4) + A{2}(7)
ans =

33

Do the same with the third anonymous function that takes two input
arguments:

A{3}(4, 7)
ans =

33

Space Characters in Anonymous Function Elements
Note that while using space characters in the definition of any function can
make your code easier to read, spaces in the body of an anonymous function
that is defined in a cell array can sometimes be ambiguous to MATLAB. To
ensure accurate interpretation of anonymous functions in cell arrays, you
can do any of the following:

• Remove all spaces from at least the body (not necessarily the argument
list) of each anonymous function:

A = {@(x)x.^2, @(y)y+10, @(x, y)x.^2+y+10};

• Enclose in parentheses any anonymous functions that include spaces:

A = {(@(x)x .^ 2), (@(y) y +10), (@(x, y) x.^2 + y+10)};

• Assign each anonymous function to a variable, and use these variable
names in creating the cell array:

15-6

Anonymous Functions

A1 = @(x)x .^ 2; A2 = @(y) y +10; A3 = @(x, y)x.^2 + y+10;
A = {A1, A2, A3};

Outputs from Anonymous Functions
As with other MATLAB functions, the number of outputs returned by an
anonymous function depends mainly on how many variables you specify to
the left of the equals (=) sign when you call the function.

For example, consider an anonymous function getPersInfo that returns a
person’s address, home phone, business phone, and date of birth, in that order.
To get someone’s address, you can call the function specifying just one output:

address = getPersInfo(name);

To get more information, specify more outputs:

[address, homePhone, busPhone] = getPersInfo(name);

Of course, you cannot specify more outputs than the maximum number
generated by the function, which is four in this case.

Example
The anonymous getXLSData function shown here calls the MATLAB xlsread
function with a preset spreadsheet filename (records.xls) and a variable
worksheet name (worksheet):

getXLSData = @(worksheet) xlsread('records.xls', worksheet);

The records.xls worksheet used in this example contains both numeric and
text data. The numeric data is taken from instrument readings, and the text
data describes the category that each numeric reading belongs to.

Because the MATLAB xlsread function is defined to return up to three
values (numeric, text, and raw data), getXLSData can also return this same
number of values, depending on how many output variables you specify to the
left of the equals sign in the call. Call getXLSData a first time, specifying
only a single (numeric) output, dNum:

dNum = getXLSData('Week 12');

15-7

15 Types of Functions

Display the data that is returned using a for loop. You have to use generic
names (v1, v2, v3) for the categories due to the fact that the text of the real
category names was not returned in the call:

for k = 1:length(dNum)
disp(sprintf('%s v1: %2.2f v2: %d v3: %d', ...

datestr(clock, 'HH:MM'), dNum(k,1), dNum(k,2), ...
dNum(k,3)));

end

Here is the output from the first call:

12:55 v1: 78.42 v2: 32 v3: 37
13:41 v1: 69.73 v2: 27 v3: 30
14:26 v1: 77.65 v2: 17 v3: 16
15:10 v1: 68.19 v2: 22 v3: 35

Now try this again, but this time specifying two outputs, numeric (dNum)
and text (dTxt):

[dNum, dTxt] = getXLSData('Week 12');

for k = 1:length(dNum)
disp(sprintf('%s %s: %2.2f %s: %d %s: %d', ...

datestr(clock, 'HH:MM'), dTxt{1}, dNum(k,1), ...
dTxt{2}, dNum(k,2), dTxt{3}, dNum(k,3)));

end

This time, you can display the category names returned from the spreadsheet:

12:55 Temp: 78.42 HeatIndex: 32 WindChill: 37
13:41 Temp: 69.73 HeatIndex: 27 WindChill: 30
14:26 Temp: 77.65 HeatIndex: 17 WindChill: 16
15:10 Temp: 68.19 HeatIndex: 22 WindChill: 35

Variables Used in the Expression
Anonymous functions commonly include two types of variables:

• Variables specified in the argument list. These often vary with each
function call.

15-8

Anonymous Functions

• Variables specified in the body of the expression. MATLAB captures these
variables and holds them constant throughout the lifetime of the function
handle.

The latter variables must have a value assigned to them at the time you
construct an anonymous function that uses them. Upon construction,
MATLAB captures the current value for each variable specified in the body
of that function. The function will continue to associate this value with the
variable even if the value should change in the workspace or go out of scope.

The fact that MATLAB captures the values of these variables when the
handle to the anonymous function is constructed enables you to execute an
anonymous function from anywhere in the MATLAB environment, even
outside the scope in which its variables were originally defined. But it also
means that to supply new values for any variables specified within the
expression, you must reconstruct the function handle.

Changing Variables Used in an Anonymous Function
The second statement shown below constructs a function handle for an
anonymous function called parabola that uses variables a, b, and c in the
expression. Passing the function handle to the MATLAB fplot function plots
it out using the initial values for these variables:

a = 1.3; b = .2; c = 30;
parabola = @(x) a*x.^2 + b*x + c;
fplot(parabola, [-25 25])

15-9

15 Types of Functions

If you change the three variables in the workspace and replot the figure, the
parabola remains unchanged because the parabola function is still using the
initial values of a, b, and c:

a = -3.9; b = 52; c = 0;
fplot(parabola, [-25 25])

15-10

Anonymous Functions

To get the function to use the new values, you need to reconstruct the function
handle, causing MATLAB to capture the updated variables. Replot using the
new construct, and this time the parabola takes on the new values:

a = -3.9; b = 52; c = 0;
parabola = @(x) a*x.^2 + b*x + c;
fplot(parabola, [-25 25])

For the purposes of this example, there is no need to store the handle to the
anonymous function in a variable (parabola, in this case). You can just
construct and pass the handle right within the call to fplot. In this way, you
update the values of a, b, and c on each call:

fplot(@(x) a*x.^2 + b*x + c, [-25 25])

Examples of Anonymous Functions
This section shows a few examples of how you can use anonymous functions.
These examples are intended to show you how to program with this type
of function.

The examples in this section include:

• “Example 1 — Passing a Function to quad” on page 15-12

15-11

15 Types of Functions

• “Example 2 — Multiple Anonymous Functions” on page 15-13

Example 1 — Passing a Function to quad
The equation shown here has one variable t that can vary each time you call
the function, and two additional variables, g and omega. Leaving these two
variables flexible allows you to avoid having to hardcode values for them in
the function definition:

x = g * cos(omega * t)

One way to program this equation is to write a function, and then create a
function handle for it so that you can pass the function to other functions, such
as the MATLAB quad function as shown here. However, this requires creating
and maintaining a new file for a purpose that is likely to be temporary, using
a more complex calling syntax when calling quad, and passing the g and
omega parameters on every call. Here is the function:

function f = vOut(t, g, omega)
f = g * cos(omega * t);

This code has to specify g and omega on each call:

g = 2.5; omega = 10;

quad(@vOut, 0, 7, [], [], g, omega)
ans =

0.1935

quad(@vOut, -5, 5, [], [], g, omega)
ans =

-0.1312

You can simplify this procedure by setting the values for g and omega just
once at the start, constructing a function handle to an anonymous function
that only lasts the duration of your MATLAB session, and using a simpler
syntax when calling quad:

g = 2.5; omega = 10;
f = @(t) (g * cos(omega * t));

15-12

Anonymous Functions

quad(f, 0, 7)
ans =

0.1935

quad(f, -5, 5)
ans =

-0.1312

To preserve an anonymous function from one MATLAB session to the next,
save the function handle to a MAT-file

save anon.mat f

and then load it into the MATLAB workspace in a later session:

load anon.mat f

Example 2 — Multiple Anonymous Functions
This example solves the following equation by combining two anonymous
functions:

The equivalent anonymous function for this expression is

g = @(c) (quad(@(x) (x.^2 + c*x + 1), 0, 1));

This was derived as follows. Take the parenthesized part of the equation (the
integrand) and write it as an anonymous function. You do not need to assign
the output to a variable as it will only be passed as input to the quad function:

@(x) (x.^2 + c*x + 1)

Next, evaluate this function from zero to one by passing the function
handle, shown here as the entire anonymous function, to quad. You need to
temporarily set c to some value to test this:

c = 2;

15-13

15 Types of Functions

quad(@(x) (x.^2 + c*x + 1), 0, 1)
ans =

2.3333

Supply the value for c by constructing an anonymous function for the entire
equation and you are done:

g = @(c) (quad(@(x) (x.^2 + c*x + 1), 0, 1));

g(2)
ans =

2.3333

15-14

Primary Functions

Primary Functions
The first function in any MATLAB program file is called the primary function.
Following the primary function can be any number of subfunctions, which can
serve as subroutines to the primary function.

Under most circumstances, the primary function is the only function in the file
that you can call from the MATLAB command line or from another function.
You invoke this function using the name of the file in which it is defined.

For example, the average function shown here resides in the file average.m:

function y = average(x)
% AVERAGE Mean of vector elements.

y = sum(x)/length(x); % Actual computation

You can invoke this function from the MATLAB command line with this
command to find the average of three numbers:

average([12 60 42])

Note that it is customary to give the primary function the same name as the
file in which it resides. If the function name differs from the filename, then
you must use the filename to invoke the function.

15-15

15 Types of Functions

Nested Functions

In this section...

“Writing Nested Functions” on page 15-16

“Calling Nested Functions” on page 15-18

“Variable Scope in Nested Functions” on page 15-19

“Using Function Handles with Nested Functions” on page 15-21

“Restrictions on Assigning to Variables” on page 15-26

“Examples of Nested Functions” on page 15-27

Writing Nested Functions
You can define one or more functions within another function in your
MATLAB application. These inner functions are said to be nested within
the function that contains them. You can also nest functions within other
nested functions. You cannot however define a nested function inside any of
the MATLAB program control statements. This includes any block of code
that is controlled by an if/elseif/else, switch, for, while, or try/catch
statement.

To write a nested function, simply define one function within the body of
another function in your program. Like any function, a nested function
contains any or all of the components described in “Basic Parts of a Program
File” on page 14-10. In addition, you must always terminate a nested function
with an end statement:

function x = A(p1, p2)
...

function y = B(p3)
...
end

...
end

15-16

Nested Functions

Note Functions do not normally require a terminating end statement. This
rule does not hold, however, when you nest functions. If a program file
contains one or more nested functions, you must terminate all functions
(including subfunctions) in the file with end, whether or not they contain
nested functions.

Example — More Than One Nested Function
This example shows function A and two additional functions nested inside A
at the same level:

function x = A(p1, p2)
...

function y = B(p3)
...
end

function z = C(p4)
...
end

...
end

Example — Multiply Nested Functions
This example shows multiply nested functions, C nested inside B, and B in A:

function x = A(p1, p2)
...

function y = B(p3)
...

function z = C(p4)
...
end

...
end

...
end

15-17

15 Types of Functions

Calling Nested Functions
You can call a nested function

• From the level immediately above it. (In the following code, function A can
call B or D, but not C or E.)

• From a function nested at the same level within the same parent function.
(Function B can call D, and D can call B.)

• From a function at any lower level. (Function C can call B or D, but not E.)

function A(x, y) % Primary function
B(x, y);
D(y);

function B(x, y) % Nested in A
C(x);
D(y);

function C(x) % Nested in B
D(x);
end

end

function D(x) % Nested in A
E(x);

function E(x) % Nested in D
...
end

end
end

You can also call a subfunction from any nested function in the same file.

You can pass variable numbers of arguments to and from nested functions,
but you should be aware of how MATLAB interprets varargin, varargout,
nargin, and nargout under those circumstances. See "Passing Optional
Arguments to Nested Functions" for more information on this.

15-18

Nested Functions

Note If you construct a function handle for a nested function, you can call the
nested function from any MATLAB function that has access to the handle.
See “Using Function Handles with Nested Functions” on page 15-21.

Nested functions are not accessible to the str2func or feval function. You
cannot call a nested function using a handle that has been constructed with
str2func. And, you cannot call a nested function by evaluating the function
name with feval. To call a nested function, you must either call it directly by
name, or construct a function handle for it using the @ operator.

Variable Scope in Nested Functions
The scope of a variable is the range of functions that have direct access to the
variable to set, modify, or acquire its value. When you define a local (i.e.,
nonglobal) variable within a function, its scope is normally restricted to that
function alone. For example, subfunctions do not share variables with the
primary function or with other subfunctions. This is because each function
and subfunction stores its variables in its own separate workspace.

Like other functions, a nested function has its own workspace. But it also has
access to the workspaces of all functions in which it is nested. So, for example,
a variable that has a value assigned to it by the primary function can be read
or overwritten by a function nested at any level within the primary. Similarly,
a variable that is assigned in a nested function can be read or overwritten by
any of the functions containing that function.

In the following two examples, variable x is stored in the workspace of the
outer varScope function and can be read or written to by all functions nested
within it.

15-19

15 Types of Functions

function varScope1
x = 5;
nestfun1

function nestfun1
nestfun2

function nestfun2
x = x + 1

end
end

end

function varScope2
nestfun1

function nestfun1
nestfun2

function nestfun2
x = 5;

end
end

x = x + 1
end

As a rule, a variable used or defined within a nested function resides in the
workspace of the outermost function that both contains the nested function
and accesses that variable. The scope of this variable is then the function to
which this workspace belongs, and all functions nested to any level within
that function.

In the next example, the outer function, varScope3, does not access variable
x. Following the rule just stated, x is unknown to the outer function and
thus is not shared between the two nested functions. In fact, there are
two separate x variables in this example: one in the function workspace of
nestfun1 and one in the function workspace of nestfun2. When nestfun2
attempts to update x, it fails because x does not yet exist in this workspace:

function varScope3
nestfun1
nestfun2

function nestfun1
x = 5;

end

function nestfun2
x = x + 1

end
end

15-20

Nested Functions

The Scope of Output Variables
Variables containing values returned by a nested function are not in the scope
of outer functions. In the two examples shown here, the one on the left fails
in the second to last line because, although the value of y is returned by the
nested function, the variable y is local to the nested function, and unknown to
the outer function. The example on the right assigns the return value to a
variable, z, and then displays the value of z correctly.

Incorrect Correct

function varScope4
x = 5; nestfun;

function y = nestfun
y = x + 1;

end

y
end

function varScope5
x = 5;
z = nestfun;

function y = nestfun
y = x + 1;

end

z
end

Using Function Handles with Nested Functions
Every function has a certain scope, that is, a certain range of other functions
to which it is visible. A function’s scope determines which other functions can
call it. You can call a function that is out of scope by providing an alternative
means of access to it in the form of a function handle. (The function handle,
however, must be within the scope of its related function when you construct
the handle.) Any function that has access to a function handle can call the
function with which the handle is associated.

Note Although you can call an out of scope function by means of a function
handle, the handle itself must be within the scope of its related function at
the time it is constructed.

The section on “Calling Nested Functions” on page 15-18 defines the scope of
a nested function. As with other types of functions, you can make a nested
function visible beyond its normal scope with a function handle. The following
function getCubeHandle constructs a handle for nested function findCube

15-21

15 Types of Functions

and returns its handle, h, to the caller. The @ sign placed before a function
name (e.g., @findCube) is the MATLAB operator that constructs a handle
for that function:

function h = getCubeHandle
h = @findCube; % Function handle constructor

function cube = findCube(X) % Nested function
cube = X .^ 3;

end
end

Call getCubeHandle to obtain the function handle to the nested function
findCube. Assign the function handle value returned by getCubeHandle to an
output variable, cubeIt in this case:

cubeIt = getCubeHandle;

You can now use this variable as a means of calling findCube from outside of
its program file:

cubeIt(8)
ans =

512

Note When calling a function by means of its handle, use the same syntax
as if you were calling a function directly. But instead of calling the function
by its name (e.g., strcmp(S1, S2)), use the variable that holds the function
handle (e.g., fhandle(S1, S2)).

Function Handles and Nested Function Variables
One characteristic of nested functions that makes them different from other
MATLAB functions is that they can share nonglobal variables with certain
other functions in the same file. A nested function nFun can share variables
with any outer function that contains nFun, and with any function nested
within nFun. This characteristic has an impact on how certain variables are
stored when you construct a handle for a nested function.

15-22

Nested Functions

Defining Variables When Calling Via Function Handle. The example
below shows a primary function getHandle that returns a function handle for
the nested function nestFun. The nestFun function uses three different types
of variables. The VLoc variable is local to the nested function, VInp is passed in
when the nested function is called, and VExt is defined by the outer function:

function h = getHandle(X)
h = @nestFun;
VExt = someFun(X);

function nestFun(VInp)
VLoc = 173.5;
doSomeTask(VInp, VLoc, VExt);
end

end

As with any function, when you call nestFun, you must ensure that you
supply the values for any variables it uses. This is a straightforward matter
when calling the nested function directly (that is, calling it from getHandle).
VLoc has a value assigned to it within nestFun, VInp has its value passed in,
and VExt acquires its value from the workspace it shares with getHandle.

However, when you call nestFun using a function handle, only the nested
function executes; the outer function, getHandle, does not. It might seem at
first that the variable VExt, otherwise given a value by getHandle, has no
value assigned to it in the case. What in fact happens though is that MATLAB
stores variables such as VExt inside the function handle itself when it is being
constructed. These variables are available for as long as the handle exists.

The VExt variable in this example is considered to be externally scoped with
respect to the nested function. Externally scoped variables that are used in
nested functions for which a function handle exists are stored within the
function handle. So, function handles not only contain information about
accessing a function. For nested functions, a function handle also stores the
values of any externally scoped variables required to execute the function.

Example Using Externally Scoped Variables
The sCountFun and nCountFun functions shown below return function handles
for subfunction subCount and nested function nestCount, respectively.

15-23

15 Types of Functions

These two inner functions store a persistent value in memory (the value is
retained in memory between function calls), and then increment this value
on every subsequent call. subCount makes its count value persistent with
an explicit persistent declaration. In nestCount, the count variable is
externally scoped and thus is maintained in the function handle:

Using a Subfunction Using a Nested Function

function h = sCountFun(X)
h = @subCount;
count = X
subCount(0, count);
function subCount(incr, ini)
persistent count;
initializing = nargin > 1;
if initializing

count = ini; else
count = count + incr

end

function h = nCountFun(X)
h = @nestCount;
count = X

function nestCount(incr)
count = count + incr

end
end

When sCountFun executes, it passes the initial value for count to the
subCount subfunction. Keep in mind that the count variable in sCountFun is
not the same as the count variable in subCount; they are entirely independent
of each other. Whenever subCount is called via its function handle, the value
for count comes from its persistent place in memory.

In nestCount, the count variable again gets its value from the primary
function when called from within the file. However, in this case the count
variable in the primary and nested functions are one and the same. When
nestCount is called by means of its function handle, the value for count is
assigned from its storage within the function handle.

Running the Example. The subCount and nestCount functions increment a
value in memory by another value that you pass as an input argument. Both
of these functions give the same results.

Get the function handle to nestCount, and initialize the count value to a
four-element vector:

h = nCountFun([100 200 300 400])

15-24

Nested Functions

count =
100 200 300 400

Increment the persistent vector by 25, and then by 42:

h(25)
count =

125 225 325 425

h(42)
count =

167 267 367 467

Now do the same using sCountFun and subCount, and verify that the results
are the same.

Note If you construct a new function handle to subCount or nestCount, the
former value for count is no longer retained in memory. It is replaced by
the new value.

Separate Instances of Externally Scoped Variables
The code shown below constructs two separate function handles to the same
nested function, nestCount, that was used in the last example. It assigns
the handles to fields counter1 and counter2 of structure s. These handles
reference different instances of the nestCount function. Each handle also
maintains its own separate value for the externally scoped count variable.

Call nCountFun twice to get two separate function handles to nestCount.
Initialize the two instances of count to two different vectors:

s.counter1 = nCountFun([100 200 300 400]);
count =

100 200 300 400

s.counter2 = nCountFun([-100 -200 -300 -400]);
count =

-100 -200 -300 -400

15-25

15 Types of Functions

Now call nestCount by means of each function handle to demonstrate that
MATLAB increments the two count variables individually.

Increment the first counter:

s.counter1(25)
count =

125 225 325 425
s.counter1(25)
count =

150 250 350 450

Now increment the second counter:

s.counter2(25)
count =

-75 -175 -275 -375
s.counter2(25)
count =

-50 -150 -250 -350

Go back to the first counter and you can see that it keeps its own value for
count:

s.counter1(25)
count =

175 275 375 475

Restrictions on Assigning to Variables
The scoping rules for nested, and in some cases anonymous, functions require
that all variables used within the function be present in the text of the code.
Adding variables to the workspace of this type of function at run time is not
allowed.

MATLAB issues an error if you attempt to dynamically add a variable to the
workspace of an anonymous function, a nested function, or a function that
contains a nested function. Examples of operations that might use dynamic
assignment in this way are shown in the table below.

15-26

Nested Functions

Type of Operation
How to Avoid Using Dynamic
Assignment

Evaluating an expression using
eval or evalin, or assigning a
variable with assignin

As a general suggestion, it is best to avoid
using the eval, evalin, and assignin
functions altogether.

Loading variables from a
MAT-file with the load function

Use the form of load that returns a
MATLAB structure.

Assigning to a variable in a
MATLAB script

Convert the script to a function, where
argument- and result-passing can often
clarify the code as well.

Assigning to a variable in the
MATLAB debugger

You can declare the variable to be
global. For example, to create a variable
X for temporary use in debugging, use

K>> global X; X = value

One way to avoid this error in the other cases is to pre-declare the variable in
the desired function.

Examples of Nested Functions
This section shows a few examples of how you can use nested functions. These
examples are intended to show you how to program with this type of function.

The examples in this section include:

• “Example 1 — Creating a Function Handle for a Nested Function” on
page 15-27

• “Example 2 — Function-Generating Functions” on page 15-29

Example 1 — Creating a Function Handle for a Nested Function
The following example constructs a function handle for a nested function and
then passes the handle to the MATLAB fplot function to plot the parabola
shape. The makeParabola function shown here constructs and returns a

15-27

15 Types of Functions

function handle fhandle for the nested parabola function. This handle gets
passed to fplot:

function fhandle = makeParabola(a, b, c)
% MAKEPARABOLA returns a function handle with parabola
% coefficients.

fhandle = @parabola; % @ is the function handle constructor

function y = parabola(x)
y = a*x.^2 + b*x + c;
end

end

Assign the function handle returned from the call to a variable (h) and
evaluate the function at points 0 and 25:

h = makeParabola(1.3, .2, 30)
h =

@makeParabola/parabola

h(0)
ans =

30

h(25)
ans =

847.5000

15-28

Nested Functions

Now pass the function handle h to the fplot function, evaluating the
parabolic equation from x = -25 to x = +25:

fplot(h, [-25 25])

Example 2 — Function-Generating Functions
The fact that a function handle separately maintains a unique instance of the
function from which it is constructed means that you can generate multiple
handles for a function, each operating independently from the others. The
function in this example makes IIR filtering functions by constructing
function handles from nested functions. Each of these handles maintains its
own internal state independent of the others.

The function makeFilter takes IIR filter coefficient vectors a and b and
returns a filtering function in the form of a function handle. Each time a new
input value xn is available, you can call the filtering function to get the new
output value yn. Each filtering function created by makeFilter keeps its own
private a and b vectors, in addition to its own private state vector, in the form
of a transposed direct form II delay line:

function [filtfcn, statefcn] = makeFilter(b, a)
% FILTFCN = MAKEFILTER(B, A) creates an IIR filtering
% function and returns it in the form of a function handle,

15-29

15 Types of Functions

% FILTFCN. Each time you call FILTFCN with a new filter
% input value, it computes the corresponding new filter
% output value, updating its internal state vector at the
% same time.
%
% [FILTFCN, STATEFCN] = MAKEFILTER(B, A) also returns a
% function (in the form of a function handle, STATEFCN)
% that can return the filter's internal state. The internal
% state vector is in the form of a transposed direct form
% II delay line.

% Initialize state vector. To keep this example a bit
% simpler, assume that a and b have the same length.
% Also assume that a(1) is 1.

v = zeros(size(a));

filtfcn = @iirFilter;
statefcn = @getState;

function yn = iirFilter(xn)
% Update the state vector
v(1) = v(2) + b(1) * xn;
v(2:end-1) = v(3:end) + b(2:end-1) * xn - ...

a(2:end-1) * v(1);
v(end) = b(end) * xn - a(end) * v(1);

% Output is the first element of the state vector.
yn = v(1);

end

function vOut = getState
vOut = v;

end
end

This sample session shows how makeFilter works. Make a filter that has
a decaying exponential impulse response and then call it a few times in
succession to see the output values change:

15-30

Nested Functions

[filt1, state1] = makeFilter([1 0], [1 -.5]);

% First input to the filter is 1.
filt1(1)
ans =

1

% Second input to the filter is 0.
filt1(0)
ans =

0.5000

filt1(0)
ans =

0.2500

% Show the filter's internal state.
state1()
ans =

0.2500 0.1250

% Hit the filter with another impulse.
filt1(1)
ans =

1.1250

% How did the state change?
state1()
ans =

1.1250 0.5625

% Make an averaging filter.
filt2 = makeFilter([1 1 1]/3, [1 0 0]);

% Put a step input into filt2.
filt2(1)
ans =

0.3333

filt2(1)

15-31

15 Types of Functions

ans =
0.6667

filt2(1)
ans =

1

% The two filter functions can be used independently.
filt1(0)
ans =

0.5625

As an extension of this example, suppose you were looking for a way to
develop simulations of different filtering structures and compare them. This
might be useful if you were interested in obtaining the range of values taken
on by elements of the state vector, and how those values compare with a
different filter structure. Here is one way you could capture the filter state at
each step and save it for later analysis:

Call makeFilter with inputs v1 and v2 to construct function handles to the
iirFilter and getState subfunctions:

[filtfcn, statefcn] = makeFilter(v1, v2);

Call the iirFilter and getState functions by means of their handles,
passing in random values:

x = rand(1, 20);
for k = 1:20

y(k) = filtfcn(x(k));
states{k} = statefcn(); % Save the state at each step.

end

15-32

Subfunctions

Subfunctions

In this section...

“Overview” on page 15-33

“Calling Subfunctions” on page 15-34

“Accessing Help for a Subfunction” on page 15-34

Overview
MATLAB program files can contain code for more than one function.
Additional functions within the file are called subfunctions, and these are only
visible to the primary function or to other subfunctions in the same file.

Each subfunction begins with its own function definition line. The functions
immediately follow each other. The various subfunctions can occur in any
order, as long as the primary function appears first:

function [avg, med] = newstats(u) % Primary function
% NEWSTATS Find mean and median with internal functions.
n = length(u);
avg = mean(u, n);
med = median(u, n);

function a = mean(v, n) % Subfunction
% Calculate average.
a = sum(v)/n;

function m = median(v, n) % Subfunction
% Calculate median.
w = sort(v);
if rem(n, 2) == 1

m = w((n+1) / 2);
else

m = (w(n/2) + w(n/2+1)) / 2;
end

15-33

15 Types of Functions

The subfunctions mean and median calculate the average and median of the
input list. The primary function newstats determines the length of the list
and calls the subfunctions, passing to them the list length n.

Subfunctions cannot access variables used by other subfunctions, even within
the same file, or variables used by the primary function of that file, unless
you declare them as global within the pertinent functions, or pass them as
arguments.

Calling Subfunctions
When you call a function from within a program file, MATLAB first checks the
file to see if the function is a subfunction. It then checks for a private function
(described in the following section) with that name, and then for a standard
program file or built-in function on your search path. Because it checks for
a subfunction first, you can override existing files using subfunctions with
the same name.

Accessing Help for a Subfunction
You can write help for subfunctions using the same rules that apply to
primary functions. To display the help for a subfunction, precede the
subfunction name with the name of the file that contains the subfunction
(minus file extension) and a > character.

For example, to get help on subfunction mysubfun in file myfun.m, type

help myfun>mysubfun

15-34

Private Functions

Private Functions

In this section...

“Overview” on page 15-35

“Private Folders” on page 15-35

“Accessing Help for a Private Function” on page 15-36

Overview
Private functions are functions that reside in subfolders with the special
name private. These functions are called private because they are visible
only to functions and scripts that meet these conditions:

• A function that calls a private function must be defined in a program file
that resides in the folder immediately above that private subfolder.

• A script that calls a private function must itself be called from a function
that has access to the private function according to the above rule.

For example, assume the folder newmath is on the MATLAB search path.
A subfolder of newmath called private can contain functions that only the
functions in newmath can call.

Because private functions are invisible outside the parent folder, they can use
the same names as functions in other folders. This is useful if you want to
create your own version of a particular function while retaining the original in
another folder. Because MATLAB looks for private functions before standard
functions, it finds a private function named test.m before a nonprivate
program file named test.m.

Primary functions and subfunctions can also be implemented as private
functions.

Private Folders
You can create your own private folders simply by creating subfolders called
private using the standard procedures for creating folders on your computer.
Do not place these private folders on your path.

15-35

15 Types of Functions

Accessing Help for a Private Function
You can write help for private functions using the same rules that apply to
primary functions. To display the help for a private function, precede the
private function name with private/.

For example, to get help on private function myprivfun, type

help private/myprivfun

15-36

Overloaded Functions

Overloaded Functions
Overloaded functions are useful when you need to create a function that
responds to different types of inputs accordingly. For instance, you might
want one of your functions to accept both double-precision and integer input,
but to handle each type somewhat differently. You can make this difference
invisible to the user by creating two separate functions having the same
name, and designating one to handle double types and one to handle integers.

MATLAB overloaded functions reside in subfolders having a name starting
with the symbol @ and followed by the name of a recognized MATLAB class.
For example, functions in the \@double folder execute when invoked with
arguments of MATLAB type double. Those in an \@int32 folder execute
when invoked with arguments of MATLAB type int32.

See “Overloading MATLAB Functions” for more information on overloading
functions in MATLAB.

15-37

15 Types of Functions

15-38

16

Function Arguments

• “Find Number of Function Arguments” on page 16-2

• “Support Variable Number of Inputs” on page 16-4

• “Support Variable Number of Outputs” on page 16-6

• “Validate Number of Function Arguments” on page 16-8

• “Argument Checking in Nested Functions” on page 16-11

• “Ignore Function Inputs” on page 16-13

• “Check Function Inputs with validateattributes” on page 16-14

• “Parse Function Inputs” on page 16-17

• “Input Parser Validation Functions” on page 16-22

16 Function Arguments

Find Number of Function Arguments
This example shows how to determine how many input or output arguments
your function receives using nargin and nargout.

Input Arguments

Create a function in a file named addme.m that accepts up to two inputs.
Identify the number of inputs with nargin.

function c = addme(a,b)

switch nargin
case 2

c = a + b;
case 1

c = a + a;
otherwise

c = 0;
end

Call addme with one, two, or zero input arguments.

addme(42)

ans =
84

addme(2,4000)

ans =
4002

addme

ans =
0

Output Arguments

16-2

Find Number of Function Arguments

Create a new function in a file named addme2.m that can return one or two
outputs (a result and its absolute value). Identify the number of requested
outputs with nargout.

function [result,absResult] = addme2(a,b)

switch nargin
case 2

result = a + b;
case 1

result = a + a;
otherwise

result = 0;
end

if nargout > 1
absResult = abs(result);

end

Call addme2 with one or two output arguments.

value = addme2(11,-22)

value =
-11

[value,absValue] = addme2(11,-22)

value =
-11

absValue =
11

Functions return outputs in the order they are declared in the function
definition.

See Also nargin | narginchk | nargout | nargoutchk

16-3

16 Function Arguments

Support Variable Number of Inputs
This example shows how to define a function that accepts a variable number
of input arguments using varargin. The varargin argument is a cell array
that contains the function inputs, where each input is in its own cell.

Create a function in a file named plotWithTitle.m that accepts a variable
number of paired (x,y) inputs for the plot function and an optional title. If
the function receives an odd number of inputs, it assumes that the last input
is a title.

function plotWithTitle(varargin)
if rem(nargin,2) ~= 0

myTitle = varargin{nargin};
numPlotInputs = nargin - 1;

else
myTitle = 'Default Title';
numPlotInputs = nargin;

end

plot(varargin{1:numPlotInputs})
title(myTitle)

Because varargin is a cell array, you access the contents of each cell
using curly braces, {}. The syntax varargin{1:numPlotInputs} creates a
comma-separated list of inputs to the plot function.

Call plotWithTitle with two sets of (x,y) inputs and a title.

x = [1:.1:10]; y1 = sin(x); y2 = cos(x);
plotWithTitle(x,y1,x,y2,'Sine and Cosine')

You can use varargin alone in an input argument list, or at the end of the
list of inputs, such as

function myfunction(a,b,varargin)

In this case, varargin{1} corresponds to the third input passed to the
function, and nargin returns length(varargin) + 2.

See Also nargin | varargin

16-4

Support Variable Number of Inputs

Related
Examples

• “Access Data in a Cell Array” on page 8-5

More
About

• “Argument Checking in Nested Functions” on page 16-11
• “Comma-Separated Lists” on page 2-100

16-5

16 Function Arguments

Support Variable Number of Outputs
This example shows how to define a function that returns a variable number
of output arguments using varargout. Output varargout is a cell array that
contains the function outputs, where each output is in its own cell.

Create a function in a file named magicfill.m that assigns a magic square to
each requested output.

function varargout = magicfill
nOutputs = nargout;
varargout = cell(1,nOutputs);

for k = 1:nOutputs;
varargout{k} = magic(k);

end

Indexing with curly braces {} updates the contents of a cell.

Call magicfill and request three outputs.

[first,second,third] = magicfill

first =
1

second =
1 3
4 2

third =
8 1 6
3 5 7
4 9 2

MATLAB assigns values to the outputs according to their order in the
varargout array. For example, first == varargout{1}.

You can use varargout alone in an output argument list, or at the end of
the list of outputs, such as

16-6

Support Variable Number of Outputs

function [x,y,varargout] = myfunction(a,b)

In this case, varargout{1} corresponds to the third output that the function
returns, and nargout returns length(varargout) + 2.

See Also nargout | varargout

Related
Examples

• “Access Data in a Cell Array” on page 8-5

More
About

• “Argument Checking in Nested Functions” on page 16-11

16-7

16 Function Arguments

Validate Number of Function Arguments
This example shows how to check whether your custom function receives
a valid number of input or output arguments. MATLAB performs some
argument checks automatically. For other cases, you can use narginchk or
nargoutchk.

Automatic Argument Checks

MATLAB checks whether your function receives more arguments than
expected when it can determine the number from the function definition. For
example, this function accepts up to two outputs and three inputs:

function [x,y] = myFunction(a,b,c)

If you pass too many inputs to myFunction, MATLAB issues an error. You do
not need to call narginchk to check for this case.

[X,Y] = myFunction(1,2,3,4)

Error using myFunction
Too many input arguments.

Use the narginchk and nargoutchk functions to verify that your function
receives:

• A minimum number of required arguments.

• No more than a maximum number of arguments, when your function uses
varargin or varargout.

Input Checks with narginchk

Define a function in a file named testValues.m that requires at least two
inputs. The first input is a threshold value to compare against the other
inputs.

function testValues(threshold,varargin)
minInputs = 2;
maxInputs = Inf;
narginchk(minInputs,maxInputs)

16-8

Validate Number of Function Arguments

for k = 1:(nargin-1)
if (varargin{k} > threshold)

fprintf('Test value %d exceeds %d\n',k,threshold);
end

end

Call testValues with too few inputs.

testValues(10)

Error using testValues (line 4)
Not enough input arguments.

Call testValues with enough inputs.

testValues(10,1,11,111)

Test value 2 exceeds 10
Test value 3 exceeds 10

Output Checks with nargoutchk

Define a function in a file named mysize.m that returns the dimensions of
the input array in a vector (from the size function), and optionally returns
scalar values corresponding to the sizes of each dimension. Use nargoutchk
to verify that the number of requested individual sizes does not exceed the
number of available dimensions.

function [sizeVector,varargout] = mysize(x)
minOutputs = 0;
maxOutputs = ndims(x) + 1;
nargoutchk(minOutputs,maxOutputs)

sizeVector = size(x);

varargout = cell(1,nargout-1);
for k = 1:length(varargout)

varargout{k} = sizeVector(k);
end

Call mysize with a valid number of outputs.

16-9

16 Function Arguments

A = rand(3,4,2);
[fullsize,nrows,ncols,npages] = mysize(A)

fullsize =
3 4 2

nrows =
3

ncols =
4

npages =
2

Call mysize with too many outputs.

A = 1;
[fullsize,nrows,ncols,npages] = mysize(A)

Error using mysize (line 4)
Too many output arguments.

See Also narginchk | nargoutchk

Related
Examples

• “Support Variable Number of Inputs” on page 16-4
• “Support Variable Number of Outputs” on page 16-6

16-10

Argument Checking in Nested Functions

Argument Checking in Nested Functions
This topic explains special considerations for using varargin, varargout,
nargin, and nargout with nested functions.

varargin and varargout allow you to create functions that accept variable
numbers of input or output arguments. Although varargin and varargout
look like function names, they refer to variables, not functions. This is
significant because nested functions share the workspaces of the functions
that contain them.

If you do not use varargin or varargout in the declaration of a nested
function, then varargin or varargout within the nested function refers to
the arguments of an outer function.

For example, create a function in a file named showArgs.m that uses varargin
and has two nested functions, one that uses varargin and one that does not.

function showArgs(varargin)
nested1(3,4)
nested2(5,6,7)

function nested1(a,b)
disp('nested1: Contents of varargin{1}')
disp(varargin{1})

end

function nested2(varargin)
disp('nested2: Contents of varargin{1}')
disp(varargin{1})

end

end

Call the function and compare the contents of varargin{1} in the two nested
functions.

showArgs(0,1,2)

nested1: Contents of varargin{1}

16-11

16 Function Arguments

0

nested2: Contents of varargin{1}
5

On the other hand, nargin and nargout are functions. Within any function,
including nested functions, calls to nargin or nargout return the number of
arguments for that function. If a nested function requires the value of nargin
or nargout from an outer function, pass the value to the nested function.

For example, create a function in a file named showNumArgs.m that passes
the number of input arguments from the primary (parent) function to a
nested function.

function showNumArgs(varargin)

disp(['Number of inputs to showNumArgs: ',int2str(nargin)]);
nestedFx(nargin,2,3,4)

function nestedFx(n,varargin)
disp(['Number of inputs to nestedFx: ',int2str(nargin)]);
disp(['Number of inputs to its parent: ',int2str(n)]);

end

end

Call showNumArgs and compare the output of nargin in the parent and nested
functions.

showNumArgs(0,1)

Number of inputs to showNumArgs: 2
Number of inputs to nestedFx: 4
Number of inputs to its parent: 2

See Also nargin | nargout | varargin | varargout

16-12

Ignore Function Inputs

Ignore Function Inputs
This example shows how to ignore inputs in your function definition using
the tilde (~) operator.

Use this operator when your function must accept a predefined set of inputs,
but your function does not use all of the inputs. Common applications
include defining callback functions, as shown here, or deriving a class from
a superclass.

Define a callback for a push button in a file named colorButton.m that does
not use the eventdata input. Ignore the input with a tilde.

function colorButton

figure;

uicontrol('Style','pushbutton','String','Click me','Callback',@btnCallback)

function btnCallback(h,~)

set(h,'BackgroundColor',rand(3,1))

The function declaration for btnCallback is essentially the same as

function btnCallback(h,eventdata)

However, using the tilde prevents the addition of eventdata to the function
workspace and makes it clearer that the function does not use eventdata.

You can ignore any number of function inputs, in any position in the argument
list. Separate consecutive tildes with a comma, such as

myfunction(myinput,~,~)

16-13

16 Function Arguments

Check Function Inputs with validateattributes
This example shows how to verify that the inputs to your function conform to
a set of requirements using the validateattributes function.

validateattributes requires that you pass the variable to check and the
supported data types for that variable. Optionally, pass a set of attributes
that describe the valid dimensions or values.

Check Data Type and Other Attributes

Define a function in a file named checkme.m that accepts up to three inputs:
a, b, and c. Check whether:

• a is a two-dimensional array of positive double-precision values.

• b contains 100 numeric values in an array with 10 columns.

• c is a nonempty character string or cell array.

function checkme(a,b,c)

validateattributes(a,{'double'},{'positive','2d'})
validateattributes(b,{'numeric'},{'numel',100,'ncols',10})
validateattributes(c,{'char','cell'},{'nonempty'})

disp('All inputs are ok.')

The curly braces {} indicate that the set of data types and the set of additional
attributes are in cell arrays. Cell arrays allow you to store combinations of
text and numeric data, or text strings of different lengths, in a single variable.

Call checkme with valid inputs.

checkme(pi,rand(5,10,2),'text')

All inputs are ok.

The scalar value pi is two-dimensional because size(pi) = [1,1].

16-14

Check Function Inputs with validateattributes

Call checkme with invalid inputs. The validateattributes function issues
an error for the first input that fails validation, and checkme stops processing.

checkme(-4)

Error using checkme (line 3)
Expected input to be positive.

checkme(pi,rand(3,4,2))

Error using checkme (line 4)
Expected input to be an array with number of elements equal to 100.

checkme(pi,rand(5,10,2),struct)

Error using checkme (line 5)
Expected input to be one of these types:

char, cell

Instead its type was struct.

The default error messages use the generic term input to refer to the
argument that failed validation. When you use the default error message,
the only way to determine which input failed is to view the specified line of
code in checkme.

Add Input Name and Position to Errors

Define a function in a file named checkdetails.m that performs the same
validation as checkme, but adds details about the input name and position
to the error messages.

function checkdetails(a,b,c)

validateattributes(a,{'double'},{'positive','2d'},'','First',1)
validateattributes(b,{'numeric'},{'numel',100,'ncols',10},'','Second',2)
validateattributes(c,{'char'},{'nonempty'},'','Third',3)

disp('All inputs are ok.')

16-15

16 Function Arguments

The empty string '' for the fourth input to validateattributes is a
placeholder for an optional function name string. You do not need to specify
a function name because it already appears in the error message. Specify
the function name when you want to include it in the error identifier for
additional error handling.

Call checkdetails with invalid inputs.

checkdetails(-4)

Error using checkdetails (line 3)
Expected input number 1, First, to be positive.

checkdetails(pi,rand(3,4,2))

Error using checkdetails (line 4)
Expected input number 2, Second, to be an array with
number of elements equal to 100.

See Also validateattributes | validatestring

16-16

Parse Function Inputs

Parse Function Inputs
This example shows how to define required and optional inputs, assign
defaults to optional inputs, and validate all inputs to a custom function using
the Input Parser.

The Input Parser provides a consistent way to validate and assign defaults
to inputs, improving the robustness and maintainability of your code. To
validate the inputs, you can take advantage of existing MATLAB functions or
write your own validation routines.

Step 1. Define your function.

Create a function in a file named printPhoto.m. The printPhoto function
has one required input for the file name, and optional inputs for the finish
(glossy or matte), color space (RGB or CMYK), width, and height.

function printPhoto(filename,varargin)

In your function declaration statement, specify required inputs first. Use
varargin to support optional inputs.

Step 2. Create an InputParser object.

Within your function, call inputParser to create a parser object.

p = inputParser;

Step 3. Add inputs to the scheme.

Add inputs to the parsing scheme in your function using addRequired,
addOptional, or addParamValue. For optional inputs, specify default values.

For each input, you can specify a handle to a validation function that checks
the input and returns a scalar logical (true or false) or errors. The validation
function can be an existing MATLAB function (such as ischar or isnumeric)
or a function that you create (such as an anonymous function or a subfunction).

In the printPhoto function, filename is a required input. Define finish and
color as optional input strings, and width and height as optional parameter
value pairs.

16-17

16 Function Arguments

defaultFinish = 'glossy';
validFinishes = {'glossy','matte'};
checkFinish = @(x) any(validatestring(x,validFinishes));

defaultColor = 'RGB';
validColors = {'RGB','CMYK'};
checkColor = @(x) any(validatestring(x,validColors));

defaultWidth = 6;
defaultHeight = 4;

addRequired(p,'filename',@ischar);
addOptional(p,'finish',defaultFinish,checkFinish);
addOptional(p,'color',defaultColor,checkColor);
addParamValue(p,'width',defaultWidth,@isnumeric);
addParamValue(p,'height',defaultHeight,@isnumeric);

Inputs that you add with addRequired or addOptional are positional
arguments. When you call a function with positional inputs, specify those
values in the order they are added to the parsing scheme.

Inputs added with addParamValue are not positional, so you can pass values
for height before or after values for width. However, parameter value inputs
require that you pass the input name ('height' or 'width') along with the
value of the input.

If your function accepts optional input strings and parameter name and value
pairs, specify validation functions for the optional input strings. Otherwise,
the Input Parser interprets the optional strings as parameter names. For
example, the checkFinish validation function ensures that printPhoto
interprets 'glossy' as a value for finish and not as an invalid parameter
name.

Step 4. Set properties to adjust parsing (optional).

By default, the Input Parser makes assumptions about case sensitivity,
function names, structure array inputs, and whether to allow additional
parameter names and values that are not in the scheme. Properties allow you
to explicitly define the behavior. Set properties using dot notation, similar to
assigning values to a structure array.

16-18

Parse Function Inputs

Allow printPhoto to accept additional parameter value inputs that do not
match the input scheme by setting the KeepUnmatched property of the Input
Parser.

p.KeepUnmatched = true;

If KeepUnmatched is false (default), the Input Parser issues an error when
inputs do not match the scheme.

Step 5. Parse the inputs.

Within your function, call the parse method. Pass the values of all of the
function inputs.

parse(p,filename,varargin{:});

Step 6. Use the inputs in your function.

Access parsed inputs using these properties of the inputParser object:

• Results — Structure array with names and values of all inputs in the
scheme.

• Unmatched— Structure array with parameter names and values that are
passed to the function, but are not in the scheme (when KeepUnmatched
is true).

• UsingDefaults — Cell array with names of optional inputs that are
assigned their default values because they are not passed to the function.

Within the printPhoto function, display the values for some of the inputs:

disp(['File name: ',p.Results.filename])
disp(['Finish: ', p.Results.finish])

if ~isempty(fieldnames(p.Unmatched))
disp('Extra inputs:')
disp(p.Unmatched)

end
if ~isempty(p.UsingDefaults)

disp('Using defaults: ')
disp(p.UsingDefaults)

16-19

16 Function Arguments

end

Step 7. Call your function.

The Input Parser expects to receive inputs as follows:

• Required inputs first, in the order they are added to the parsing scheme
with addRequired.

• Optional positional inputs in the order they are added to the scheme with
addOptional.

• Positional inputs before parameter name and value pair inputs.

• Parameter names and values in the form
Name1,Value1,...,NameN,ValueN.

Pass several combinations of inputs to printPhoto, some valid and some
invalid:

printPhoto('myfile.jpg')

File name: myfile.jpg
Finish: glossy
Using defaults:

'finish' 'color' 'width' 'height'

printPhoto(100)

Error using printPhoto (line 23)
Argument 'filename' failed validation ischar.

printPhoto('myfile.jpg','satin')

Error using printPhoto (line 23)
Argument 'finish' failed validation with error:
Expected input to match one of these strings:

glossy, matte

The input, 'satin', did not match any of the valid strings.

printPhoto('myfile.jpg','height',10,'width',8)

16-20

Parse Function Inputs

File name: myfile.jpg
Finish: glossy
Using defaults:

'finish' 'color'

To pass a value for the nth positional input, either specify values for the
previous (n – 1) inputs or pass the input as a parameter name and value pair.
For example, these function calls assign the same values to finish (default
'glossy') and color:

printPhoto('myfile.gif','glossy','CMYK'); % finish and color: positional

printPhoto('myfile.gif','color','CMYK'); % color: name and value

See Also inputParser | varargin

More
About

• “Input Parser Validation Functions” on page 16-22

16-21

16 Function Arguments

Input Parser Validation Functions
This topic shows ways to define validation functions that you pass to the
Input Parser to check custom function inputs.

The Input Parser methods addRequired, addOptional, and addParamValue
each accept an optional handle to a validation function. Designate function
handles with an at (@) symbol.

Validation functions must accept a single input argument, and they must
either return a scalar logical value (true or false) or error. If the validation
function returns false, the Input Parser issues an error and your function
stops processing.

There are several ways to define validation functions:

• Use an existing MATLAB function such as ischar or isnumeric. For
example, check that a required input named num is numeric:

p = inputParser;
checknum = @isnumeric;
addRequired(p,'num',checknum);

parse(p,'text');

Argument 'num' failed validation isnumeric.

• Create an anonymous function. For example, check that input num is a
numeric scalar greater than zero:

p = inputParser;
checknum = @(x) isnumeric(x) && isscalar(x) && (x > 0);
addRequired(p,'num',checknum);

parse(p,rand(3));

Argument 'num' failed validation @(x)isnumeric(x)&&isscalar(x)&&(x>0).

• Define your own function, typically a subfunction in the same file as
your primary function. For example, in a file named usenum.m, define a

16-22

Input Parser Validation Functions

subfunction named checknum that issues custom error messages when the
input num to usenum is not a numeric scalar greater than zero:

function usenum(num)
p = inputParser;
addRequired(p,'num',@checknum);
parse(p,num);

function TF = checknum(x)
TF = false;
if ~isscalar(x)

error('Input is not scalar');
elseif ~isnumeric(x)

error('Input is not numeric');
elseif (x <= 0)

error('Input must be > 0');
else

TF = true;
end

Call the function with an invalid input:

usenum(-1)

Error using usenum (line 4)
Argument 'num' failed validation with error:
Input must be > 0

See Also inputParser | is* | validateattributes

Related
Examples

• “Parse Function Inputs” on page 16-17

More
About

• Chapter 9, “Function Handles”
• “Anonymous Functions” on page 15-3

16-23

16 Function Arguments

16-24

17

Programming Tips

• “Introduction” on page 17-2

• “Command and Function Syntax” on page 17-3

• “Help” on page 17-6

• “Development Environment” on page 17-10

• “Functions” on page 17-12

• “Function Arguments” on page 17-15

• “Program Development” on page 17-18

• “Debugging” on page 17-21

• “Variables” on page 17-25

• “Strings” on page 17-29

• “Evaluating Expressions” on page 17-32

• “MATLAB Path” on page 17-34

• “Program Control” on page 17-38

• “Save and Load” on page 17-42

• “Files and Filenames” on page 17-45

• “Input/Output” on page 17-48

• “Starting MATLAB” on page 17-50

• “Operating System Compatibility” on page 17-51

• “For More Information” on page 17-53

17 Programming Tips

Introduction
This section is a categorized compilation of tips for the MATLAB programmer.
Each item is relatively brief to help you browse through them and find
information that is useful. Many of the tips include a reference to specific
MATLAB documentation that gives you more complete coverage of the topic.

For suggestions on how to improve the performance of your MATLAB
programs, and how to write programs that use memory more efficiently, see
Improving Performance and Memory Usage.

17-2

Command and Function Syntax

Command and Function Syntax

In this section...

“Syntax Help” on page 17-3

“Command and Function Syntaxes” on page 17-3

“Command Line Continuation” on page 17-3

“Completing Commands Using the Tab Key” on page 17-4

“Recalling Commands” on page 17-4

“Clearing Commands” on page 17-5

“Suppressing Output to the Screen” on page 17-5

Syntax Help
For help about the general syntax of MATLAB functions and commands, type

help syntax

Command and Function Syntaxes
You can enter MATLAB commands using either a command or function
syntax. It is important to learn the restrictions and interpretation rules for
both.

functionname arg1 arg2 arg3 % Command syntax
functionname('arg1','arg2','arg3') % Function syntax

For more information: See “Command vs. Function Syntax” on page 1-13.

Command Line Continuation
You can continue most statements to one or more additional lines by
terminating each incomplete line with an ellipsis (...). Breaking down
a statement into a number of lines can sometimes result in a clearer
programming style.

sprintf ('Example %d shows a command coded on %d lines.\n', ...
exampleNumber, ...
numberOfLines)

17-3

17 Programming Tips

Note that you cannot continue an incomplete string to another line.

disp 'This statement attempts to continue a string ...
to another line, resulting in an error.'

For more information: See “Continue Long Statements on Multiple Lines”
on page 1-7.

Completing Commands Using the Tab Key
You can save some typing when entering commands by entering only the first
few letters of the command, variable, property, etc. followed by the Tab key.
Typing the second line below (with T representing Tab) yields the expanded,
full command shown in the third line:

f = figure;
set(f, 'papTuT,'cT) % Type this line.
set(f, 'paperunits','centimeters') % This is what you get.

If there are too many matches for the string you are trying to complete, you
will get no response from the first Tab. Press Tab again to see all possible
choices:

set(f, 'paTT
PaperOrientation PaperPositionMode PaperType Parent
PaperPosition PaperSize PaperUnits

For more information: See Tab Completion in the Command Window.

Recalling Commands
Use any of the following methods to simplify recalling previous commands
to the screen:

• To recall an earlier command to the screen, press the up arrow key one or
more times, until you see the command you want. If you want to modify the
recalled command, you can edit its text before pressing Enter or Return
to execute it.

17-4

Command and Function Syntax

• To recall a specific command by name without having to scroll through your
earlier commands one by one, type the starting letters of the command,
followed by the up arrow key.

• Open the Command History window (Desktop > Command History) to
see all previous commands. Double-click the command you want to execute.

For more information: See Command History Window.

Clearing Commands
If you have typed a command that you then decide not to execute, you can
clear it from the Command Window by pressing the Escape (Esc) key.

Suppressing Output to the Screen
To suppress output to the screen, end statements with a semicolon. This can
be particularly useful when generating large matrices.

A = magic(100); % Create matrix A, but do not display it.

17-5

17 Programming Tips

Help

In this section...

“Using the Help Browser” on page 17-6

“Help on Functions from the Help Browser” on page 17-6

“Help on Functions from the Command Window” on page 17-7

“Topical Help” on page 17-7

“Paged Output” on page 17-8

“Writing Your Own Help” on page 17-8

“Help for Subfunctions and Private Functions” on page 17-8

“Help for Methods and Overloaded Functions” on page 17-9

Using the Help Browser
Open the Help browser from the MATLAB Command Window using one of
the following:

• Click the question mark symbol in the toolbar.

• Select Help > Product Help from the menu.

• Type the word doc at the command prompt.

For more information: See “Ways to Get Function Help”.

Help on Functions from the Help Browser
You can find help on a MATLAB function in any of the following ways:

• Click the button in the left pane of the Help browser. This
brings you to that part of the Function Reference documentation that is
organized by category. To use an alphabetical list to get help on a specific
function, click Alphabetical List at the top of that page.

• Click the button in the left pane of the Help browser. Look
in the upper left corner of the page for links to either Functions: By

17-6

Help

Category, or Functions: Alphabetical List and click there for the type of
documentation access you prefer.

• Type doc functionname at the command line.

Help on Functions from the Command Window
Several types of help on functions are available from the Command Window:

• To list all categories that you can request help on from the Command
Window, just type

help

• To see a list of functions for one of these categories, along with a brief
description of each function, type help category. For example,

help datafun

• To get help on a particular function, type help functionname. For example,

help sortrows

Topical Help
In addition to the help on individual functions, you can get help on any of the
following topics by typing help topicname at the command line.

Topic Name Description

arith Arithmetic operators

relop Relational and logical operators

punct Special character operators

slash Arithmetic division operators

paren Parentheses, braces, and bracket operators

precedence Operator precedence

datatypes MATLAB classes, their associated functions, and
operators that you can overload

lists Comma separated lists

17-7

17 Programming Tips

Topic Name Description

strings Character strings

function_handle Function handles and the @ operator

debug Debugging functions

java Using Sun Java from within the MATLAB software.

changeNotification Microsoft Windows change notification

Paged Output
Before displaying a lengthy section of help text or code, put MATLAB into its
paged output mode by typing more on. This breaks up any ensuing display
into pages for easier viewing. Turn off paged output with more off.

Page through the displayed text using the space bar key. Or step through
line by line using Enter or Return. Discontinue the display by pressing
the Q key or Ctrl+C.

Writing Your Own Help
Start each program you write with a section of text providing help on how and
when to use the function. If formatted properly, the MATLAB help function
displays this text when you enter

help functionname

MATLAB considers the first group of consecutive lines immediately following
the function definition line that begin with % to be the help section for the
function. The first line without % as the left-most character ends the help.

For more information: See Help Text.

Help for Subfunctions and Private Functions
You can write help for subfunctions using the same rules that apply to main
functions. To display the help for the subfunction mysubfun in file myfun.m,
type

17-8

Help

help myfun>mysubfun

To display the help for a private function, precede the function name with
private/. To get help on private function myprivfun, type

help private/myprivfun

Help for Methods and Overloaded Functions
You can write help text for object-oriented class methods implemented as
MATLAB functions. Display help for the method by typing

help classname/methodname

where the file methodname.m resides in subfolder @classname.

For example, if you write a plot method for a class named polynom, (where
the plot method is defined in the file @polynom/plot.m), you can display
this help by typing

help polynom/plot

You can get help on overloaded MATLAB functions in the same
way. To display the help text for the eq function as implemented in
matlab/iofun/@serial, type

help serial/eq

17-9

17 Programming Tips

Development Environment

In this section...

“Workspace Browser” on page 17-10

“Using the Find Utility” on page 17-10

“Commenting Out a Block of Code” on page 17-11

“Creating Functions from Command History” on page 17-11

“Editing Functions in EMACS” on page 17-11

Workspace Browser
The Workspace browser is a graphical interface to the variables stored in
the MATLAB base and function workspaces. You can view, modify, save,
load, and create graphics from workspace data using the browser. Select
Desktop > Workspace to open the browser.

To view function workspaces, you need to be in debug mode.

For more information: See MATLAB Workspace.

Using the Find Utility
Find any word or phrase in a group of files using the Find utility. Click

Desktop > Current Folder, click the icon at the top of the Current
Folder window, and then select Find Files from the menu that appears.

When entering search text, you do not need to put quotes around a phrase.
In fact, parts of words, like win for windows, will not be found if enclosed in
quotes.

For more information: See Finding and Replacing Text in the Current File.

17-10

Development Environment

Commenting Out a Block of Code
To comment out a block of text or code within the MATLAB editor,

1 Highlight the block of text you would like to comment out.

2 Holding the mouse over the highlighted text, select Text > Comment (or
Uncomment, to do the reverse) from the toolbar. (You can also get these
options by right-clicking the mouse.)

For more information: See Adding Comments.

Creating Functions from Command History
If there is part of your current MATLAB session that you would like to add to
a function, this is easily done using the Command History window:

1 Open this window by selecting Desktop > Command History.

2 Use Shift+Click or Ctrl+Click to select the lines you want to use. MATLAB
highlights the selected lines.

3 Right-click once, and select Create Script from the menu that appears.
MATLAB creates a new Editor window displaying the selected code.

Editing Functions in EMACS
If you use Emacs, you can download editing modes for editing MATLAB
functions with GNU-Emacs or with early versions of Emacs from the
MATLAB Central Web site:

http://www.mathworks.com/matlabcentral/

At this Web site, select File Exchange, and then Utilities > Emacs.

For more information: See General Preferences for the Editor/Debugger.

17-11

http://www.mathworks.com/matlabcentral/

17 Programming Tips

Functions

In this section...

“Function Structure” on page 17-12

“Using Lowercase for Function Names” on page 17-12

“Getting a Function’s Name and Path” on page 17-13

“What Files Does a Function Use?” on page 17-13

“Dependent Functions, Built-Ins, Classes” on page 17-14

Function Structure
An MATLAB function consists of the components shown here:

function [x, y] = myfun(a, b, c) % Function definition line
% H1 line -- A one-line summary of the function's purpose.
% Help text -- One or more lines of help text that explain
% how to use the function. This text is displayed when
% the user types "help functionname".

% The Function body normally starts after the first blank line.
% Comments -- Description (for internal use) of what the
% function does, what inputs are expected, what outputs
% are generated. Typing "help functionname" does not display
% this text.

x = prod(a, b); % Start of Function code

For more information: See Basic Parts of a Function.

Using Lowercase for Function Names
Function names appear in uppercase in MATLAB help text only to make the
help easier to read. In practice, however, it is usually best to use lowercase
when calling functions.

17-12

Functions

Case requirements depend on the case sensitivity of the operating system you
are using. As a rule, naming and calling functions using lowercase generally
makes them more portable from one operating system to another.

Getting a Function’s Name and Path
To obtain the file name for the function currently being executed, use the
following function in your code.

mfilename

To include the path along with the file name, use:

x = mfilename('fullpath')

For more information: See the mfilename function reference page.

What Files Does a Function Use?
For a simple display of all functions referenced by a particular function, follow
the steps below:

1 Type clear functions to clear all functions from memory (see Note below).

2 Execute the function you want to check. Note that the function arguments
you choose to use in this step are important, since you can get different results
when calling the same function with different arguments.

3 Type inmem to display all MATLAB function files that were used when the
function ran. If you want to see what MEX-files were used as well, specify
an additional output, as shown here:

[mfiles, mexfiles] = inmem

Note clear functions does not clear functions locked by mlock. If you
have locked functions, (which you can check using inmem), unlock them with
munlock, and then repeat step 1.

17-13

17 Programming Tips

Dependent Functions, Built-Ins, Classes
For a much more detailed display of dependent function information, use the
depfun function. In addition to MATLAB function files, depfun shows which
built-ins and classes a particular function depends on.

17-14

Function Arguments

Function Arguments

In this section...

“Getting the Input and Output Arguments” on page 17-15

“Variable Numbers of Arguments” on page 17-15

“String or Numeric Arguments” on page 17-16

“Passing Arguments in a Structure” on page 17-16

“Passing Arguments in a Cell Array” on page 17-16

Getting the Input and Output Arguments
Use nargin and nargout to determine the number of input and output
arguments in a particular function call. Use narginchk and nargoutchk to
verify that your function is called with the required number of input and
output arguments.

function [x, y] = myplot(a, b, c, d)
narginchk(2, 4) % Allow 2 to 4 inputs
nargoutchk(0, 2) % Allow 0 to 2 outputs

x = plot(a, b);
if nargin == 4

y = myfun(c, d);
end

Variable Numbers of Arguments
You can call functions with fewer input and output arguments than you have
specified in the function definition, but not more. If you want to call a function
with a variable number of arguments, use the varargin and varargout
function parameters in the function definition.

This function returns the size vector and, optionally, individual dimensions:

function [s, varargout] = mysize(x)
nout = max(nargout, 1) - 1;
s = size(x);
for k = 1:nout

17-15

17 Programming Tips

varargout(k) = {s(k)};
end

Try calling it with

[s, rows, cols] = mysize(rand(4, 5))

String or Numeric Arguments
If you are passing only string arguments into a function, you can use
MATLAB command syntax. All arguments entered in command syntax are
interpreted as strings.

strcmp string1 string1
ans =

1

When passing numeric arguments, it is best to use function syntax unless you
want the number passed as a string. The right-hand example below passes
the number 75 as the string, '75'.

isnumeric(75) isnumeric 75
ans = ans =

1 0

For more information: See Command vs. Function Syntax.

Passing Arguments in a Structure
Instead of requiring an additional argument for every value you want to pass
in a function call, you can package them in a MATLAB structure and pass the
structure. Make each input you want to pass a separate field in the structure
argument, using descriptive names for the fields.

Structures allow you to change the number, contents, or order of the
arguments without having to modify the function. They can also be useful
when you have a number of functions that need similar information.

Passing Arguments in a Cell Array
You can also group arguments into cell arrays. The disadvantage over
structures is that you do not have field names to describe each variable. The

17-16

Function Arguments

advantage is that cell arrays are referenced by index, allowing you to loop
through a cell array and access each argument passed in or out of the function.

17-17

17 Programming Tips

Program Development

In this section...

“Planning the Program” on page 17-18

“Using Pseudo-Code” on page 17-18

“Selecting the Right Data Structures” on page 17-18

“General Coding Practices” on page 17-19

“Naming a Function Uniquely” on page 17-19

“The Importance of Comments” on page 17-19

“Coding in Steps” on page 17-20

“Making Modifications in Steps” on page 17-20

“Functions with One Calling Function” on page 17-20

“Testing the Final Program” on page 17-20

Planning the Program
When planning how to write a program, take the problem you are trying
to solve and break it down into a series of smaller, independent tasks.
Implement each task as a separate function. Try to keep functions fairly
short, each having a single purpose.

Using Pseudo-Code
You may find it helpful to write the initial draft of your program in a
structured format using your own natural language. This pseudo-code is often
easier to think through, review, and modify than using a formal programming
language, yet it is easily translated into a programming language in the next
stage of development.

Selecting the Right Data Structures
Look at what classes and data structures are available to you in MATLAB and
determine which of those best fit your needs in storing and passing your data.

17-18

Program Development

General Coding Practices
A few suggested programming practices:

• Use descriptive function and variable names to make your code easier to
understand.

• Order subfunctions alphabetically in a file to make them easier to find.

• Precede each subfunction with a block of help text describing what that
subfunction does. This not only explains the subfunctions, but also helps
to visually separate them.

• Do not extend lines of code beyond the 80th column. Otherwise, it will be
hard to read when you print it out.

• Use full Handle Graphics property and value names. Abbreviated names
are often allowed, but can make your code unreadable. They also could be
incompatible in future releases of MATLAB.

Naming a Function Uniquely
To avoid choosing a name for a new function that might conflict with a name
already in use, check for any occurrences of the name using this command:

which -all functionname

For more information: See the which function reference page.

The Importance of Comments
Be sure to document your programs well to make it easier for you or someone
else to maintain them. Add comments generously, explaining each major
section and any smaller segments of code that are not obvious. You can add
a block of comments as shown here.

%---
% This function computes the ... <and so on>
%---

For more information: See Comments .

17-19

17 Programming Tips

Coding in Steps
Do not try to write the entire program all at once. Write a portion of it, and
then test that piece out. When you have that part working the way you want,
then write the next piece, and so on. It is much easier to find programming
errors in a small piece of code than in a large program.

Making Modifications in Steps
When making modifications to a working program, do not make widespread
changes all at one time. It is better to make a few small changes, test and
debug, make a few more changes, and so on. Tracking down a difficult bug
in the small section that you have changed is much easier than trying to
find it in a huge block of new code.

Functions with One Calling Function
If you have a function that is called by only one other function, put it in the
same file as the calling function, making it a subfunction.

For more information: See “String Comparisons” on page 6-25.

Testing the Final Program
One suggested practice for testing a new program is to step through the
program in the MATLAB debugger while keeping a record of each line that
gets executed on a printed copy of the program. Use different combinations of
inputs until you have observed that every line of code is executed at least once.

17-20

Debugging

Debugging

In this section...

“The MATLAB Debug Functions” on page 17-21

“More Debug Functions” on page 17-21

“The MATLAB Graphical Debugger” on page 17-22

“A Quick Way to Examine Variables” on page 17-22

“Setting Breakpoints from the Command Line” on page 17-22

“Finding Line Numbers to Set Breakpoints” on page 17-23

“Stopping Execution on an Error or Warning” on page 17-23

“Locating an Error from the Error Message” on page 17-23

“Using Warnings to Help Debug” on page 17-23

“Making Code Execution Visible” on page 17-24

“Debugging Scripts” on page 17-24

The MATLAB Debug Functions
For a brief description of the main debug functions in MATLAB, type

help debug

For more information: See Debugging Process and Features.

More Debug Functions
Other functions you may find useful in debugging are listed below.

Function Description

echo Display function or script code as it executes.

disp Display specified values or messages.

sprintf,
fprintf

Display formatted data of different types.

17-21

17 Programming Tips

Function Description

whos List variables in the workspace.

size Show array dimensions.

keyboard Interrupt program execution and allow input from
keyboard.

return Resume execution following a keyboard
interruption.

warning Display specified warning message.

MException Access information on the cause of an error.

lastwarn Return warning message that was last issued.

The MATLAB Graphical Debugger
Learn to use the MATLAB graphical debugger. You can view the function
and its calling functions as you debug, set and clear breakpoints, single-step
through the program, step into or over called functions, control visibility into
all workspaces, and find and replace strings in your files.

Start out by opening the file you want to debug using File > Open or the
open function. Use the debugging functions available on the toolbar and
pull-down menus to set breakpoints, run or step through the program, and
examine variables.

For more information: See Debugging Process and Features.

A Quick Way to Examine Variables
To see the value of a variable from the Editor/Debugger window, hold the
mouse cursor over the variable name for a second or two. You will see the
value of the selected variable displayed.

Setting Breakpoints from the Command Line
You can set breakpoints with dbstop in any of the following ways:

• Break at a specific file line number.

17-22

Debugging

• Break at the beginning of a specific subfunction.

• Break at the first executable line in a file.

• Break when a warning, or error, is generated.

• Break if any infinite or NaN values are encountered.

For more information: See Setting Breakpoints.

Finding Line Numbers to Set Breakpoints
When debugging from the command line, a quick way to find line numbers for
setting breakpoints is to use dbtype. The dbtype function displays all or part
of the file, also numbering each line. To display delaunay.m, use

dbtype delaunay

To display only lines 35 through 41, use

dbtype delaunay 35:41

Stopping Execution on an Error or Warning
Use dbstop if error to stop program execution on any error and enter
debug mode. Use dbstop if warning to stop execution on any warning and
enter debug mode.

For more information: See “Debugging Process and Features”.

Locating an Error from the Error Message
Click on the underlined text in an error message, and MATLAB opens the file
being executed in its editor and places the cursor at the point of error.

Using Warnings to Help Debug
You can detect erroneous or unexpected behavior in your programs by
inserting warning messages that MATLAB will display under the conditions
you specify. See the section on Warning Control in the MATLAB Programming
Fundamentals documentation to find out how to selectively enable warnings.

For more information: See the warning function reference page.

17-23

17 Programming Tips

Making Code Execution Visible
An easy way to see the end result of a particular line of code is to edit the
program and temporarily remove the terminating semicolon from that line.
Then, run your program and the evaluation of that statement is displayed
on the screen.

Debugging Scripts
Scripts store their variables in a workspace that is shared with the caller of
the script. So, when you debug a script from the command line, the script
uses variables from the base workspace. To avoid errors caused by workspace
sharing, type clear all before starting to debug your script to clear the
base workspace.

17-24

Variables

Variables

In this section...

“Rules for Variable Names” on page 17-25

“Making Sure Variable Names Are Valid” on page 17-25

“Do Not Use Function Names for Variables” on page 17-26

“Checking for Reserved Keywords” on page 17-26

“Avoid Using i and j for Variables” on page 17-26

“Avoid Overwriting Variables in Scripts” on page 17-27

“Persistent Variables” on page 17-27

“Protecting Persistent Variables” on page 17-27

“Global Variables” on page 17-27

Rules for Variable Names
Although variable names can be of any length, MATLAB uses only the first
N characters of the name, (where N is the number returned by the function
namelengthmax), and ignores the rest. Hence, it is important to make
each variable name unique in the first N characters to enable MATLAB to
distinguish variables. Also note that variable names are case sensitive.

N = namelengthmax
N =

63

For more information: See “Variable Names” on page 1-10.

Making Sure Variable Names Are Valid
Before using a new variable name, you can check to see if it is valid with the
isvarname function. Note that isvarname does not consider names longer
than namelengthmax characters to be valid.

For example, the following name cannot be used for a variable since it begins
with a number.

17-25

17 Programming Tips

isvarname 8thColumn
ans =

0

For more information: See “Variable Names” on page 1-10.

Do Not Use Function Names for Variables
When naming a variable, make sure you are not using a name that is already
used as a function name. If you do define a variable with a function name,
you will not be able to call that function until you clear the variable from
memory. (If it is a MATLAB built-in function, then you will still be able to call
that function but you must do so using builtin.)

To test whether a proposed variable name is already used as a function
name, use

which -all name

For more information: See “Conflicts with Function Names” on page 1-10.

Checking for Reserved Keywords
MATLAB reserves certain keywords for its own use and does not allow you
to override them. Attempts to use these words may result in any one of a
number of error messages, some of which are shown here:

Error: Expected a variable, function, or constant, found "=".
Error: "End of Input" expected, "case" found.
Error: Missing operator, comma, or semicolon.
Error: "identifier" expected, "=" found.

Use the iskeyword function with no input arguments to list all reserved
words.

Avoid Using i and j for Variables
MATLAB uses the characters i and j to represent imaginary units. Avoid
using i and j for variable names if you intend to use them in complex
arithmetic.

17-26

Variables

If you want to create a complex number without using i and j, you can use
the complex function.

Avoid Overwriting Variables in Scripts
MATLAB scripts store their variables in a workspace that is shared with
the caller of the script. When called from the command line, they share the
base workspace. When called from a function, they share that function’s
workspace. If you run a script that alters a variable that already exists in the
caller’s workspace, that variable is overwritten by the script.

For more information: See Scripts.

Persistent Variables
To get the equivalent of a static variable in MATLAB, use persistent.
When you declare a variable to be persistent within a function, its value is
retained in memory between calls to that function. Unlike global variables,
persistent variables are known only to the function in which they are
declared.

For more information: See Persistent Variables.

Protecting Persistent Variables
You can inadvertently clear persistent variables from memory by either
modifying the function in which the variables are defined, or by clearing the
function with one of the following commands:

clear all
clear functions

Locking the file in memory with mlock prevents any persistent variables
defined in the file from being reinitialized.

Global Variables
Use global variables sparingly. The global workspace is shared by all of
your functions and also by your interactive MATLAB session. The more
global variables you use, the greater the chances of unintentionally reusing a

17-27

17 Programming Tips

variable name, thus leaving yourself open to having those variables change in
value unexpectedly. This can be a difficult bug to track down.

For more information: See Global Variables.

17-28

Strings

Strings

In this section...

“Creating Strings with Concatenation” on page 17-29

“Comparing Methods of Concatenation” on page 17-29

“Store Arrays of Strings in a Cell Array” on page 17-30

“Converting Between Strings and Cell Arrays” on page 17-30

“Search and Replace Using Regular Expressions” on page 17-30

Creating Strings with Concatenation
Strings are often created by concatenating smaller elements together (e.g.,
strings, values, etc.). Two common methods of concatenating are to use the
MATLAB concatenation operator ([]) or the sprintf function. The second
and third line below illustrate both of these methods. Both lines give the
same result:

numChars = 28;
s = ['There are ' int2str(numChars) ' characters here']
s = sprintf('There are %d characters here', numChars)

For more information: See “Creating Character Arrays” on page 6-2 and
Converting from Numeric to String.

Comparing Methods of Concatenation
When building strings with concatenation, sprintf is often preferable to []
because

• It is easier to read, especially when forming complicated expressions

• It gives you more control over the output format

• It often executes more quickly

You can also concatenate using the strcat function, However, for simple
concatenations, sprintf and [] are faster.

17-29

17 Programming Tips

Store Arrays of Strings in a Cell Array
It is usually best to store an array of strings in a cell array instead of a
character array, especially if the strings are of different lengths. Strings in
a character array must be of equal length, which often requires padding the
strings with blanks. This is not necessary when using a cell array of strings
that has no such requirement.

The cellRecord below does not require padding the strings with spaces:

cellRecord = {'Allison Jones'; 'Development'; 'Phoenix'};

For more information: See Cell Arrays of Strings.

Converting Between Strings and Cell Arrays
You can convert between standard character arrays and cell arrays of strings
using the cellstr and char functions:

charRecord = ['Allison Jones'; 'Development '; ...
'Phoenix '];

cellRecord = cellstr(charRecord);

Also, a number of the MATLAB string operations can be used with either
character arrays, or cell arrays, or both:

cellRecord2 = {'Brian Lewis'; 'Development'; 'Albuquerque'};
strcmp(charRecord, cellRecord2)
ans =

0
1
0

For more information: See Converting to a Cell Array of Strings and
String Comparisons.

Search and Replace Using Regular Expressions
Using regular expressions in MATLAB offers a very versatile way of searching
for and replacing characters or phrases within a string. See the help on these
functions for more information.

17-30

Strings

Function Description

regexp Match regular expression.

regexpi Match regular expression, ignoring case.

regexprep Replace string using regular expression.

For more information: See “Regular Expressions” on page 2-40.

17-31

17 Programming Tips

Evaluating Expressions

In this section...

“Find Alternatives to Using eval” on page 17-32

“Assigning to a Series of Variables” on page 17-32

“Short-Circuit Logical Operators” on page 17-32

“Changing the Counter Variable within a for Loop” on page 17-33

Find Alternatives to Using eval
While the eval function can provide a convenient solution to certain
programming challenges, it is best to limit its use. The main reason is that
code that uses eval is often difficult to read and hard to debug. A second
reason is that an eval statement that contains one or more commands will
hide any dependencies on those commands from the MATLAB Compiler.

If you are evaluating a function, it is more efficient to use feval than eval.
The feval function is made specifically for this purpose and is optimized to
provide better performance.

For more information: See “Alternatives to the eval Function” on page
2-108.

Assigning to a Series of Variables
One common pattern for creating variables is to use a variable name suffixed
with a number (e.g., phase1, phase2, phase3, etc.). We recommend using a
cell array to build this type of variable name series, as it makes code more
readable and executes more quickly than some other methods. For example:

for k = 1:800
phase{k} = expression;

end

Short-Circuit Logical Operators
MATLAB has logical AND and OR operators (&& and ||) that enable you to
partially evaluate, or short-circuit, logical expressions. Short-circuit operators

17-32

Evaluating Expressions

are useful when you want to evaluate a statement only when certain
conditions are satisfied.

In this example, MATLAB does not execute the function myfun unless the file
that defines myfun exists on the current path.

comp = (exist('myfun.m') == 2) && (myfun(x) >= y)

For more information: See “Short-Circuit Operators” on page 2-10.

Changing the Counter Variable within a for Loop
You cannot change the value of the loop counter variable (e.g., the variable
k in the example below) in the body of a for loop. For example, this loop
executes just 10 times, even though k is set back to 1 on each iteration.

for k = 1:10
fprintf('Pass %d\n', k)
k = 1;

end

Although MATLAB does allow you to use a variable of the same name as the
loop counter within a loop, this is not a recommended practice.

17-33

17 Programming Tips

MATLAB Path

In this section...

“Precedence Rules” on page 17-34

“Adding a Folder to the Search Path” on page 17-35

“Handles to Functions Not on the Path” on page 17-35

“Making Toolbox File Changes Visible to MATLAB” on page 17-36

“Making Nontoolbox File Changes Visible to MATLAB” on page 17-36

“Change Notification on Windows” on page 17-37

Precedence Rules
When MATLAB is given a name to interpret, it determines its usage by
checking the name against each of the entities listed below, and in the order
shown:

1 Variable

2 Nested function within the current function

3 Local function within the current file

4 Private function

5 Class constructor

6 Overloaded method

7 Function in the current folder

8 Function elsewhere on the path, in order of appearance

If you refer to a file by its filename only (leaving out the file extension), and
there is more than one file of this name in the folder, MATLAB selects the
file to use according to the following precedence:

1 Built-in function

17-34

MATLAB® Path

2 MEX-function

3 Simulink model, with file types in this order:

a SLX file

b MDL file

4 P-file (that is, an encoded program file with a .p extension)

5 Program file with a .m extension

For more information: See “Function Precedence Order” on page 14-35.

Adding a Folder to the Search Path
To add a folder to the search path, use either of the following:

• At the toolbar, select File > Set Path.

• At the command line, use the addpath function.

You can also add a folder and all of its subfolders in one operation by either of
these means. To do this from the command line, use genpath together with
addpath. The online help for the genpath function shows how to do this.

This example adds /control and all of its subfolders to the MATLAB path:

addpath(genpath('K:/toolbox/control'))

For more information: See Search Path.

Handles to Functions Not on the Path
You cannot create function handles to functions that are not on the MATLAB
path. But you can achieve essentially the same thing by creating the handles
through a script file placed in the same off-path folder as the functions. If
you then run the script, using run path/script, you will have created the
handles that you need.

For example,

17-35

17 Programming Tips

1 Create a script in this off-path folder that constructs function handles and
assigns them to variables. That script might look something like this:

File E:/testdir/createFhandles.m
fhset = @setItems
fhsort = @sortItems
fhdel = @deleteItem

2 Run the script from your Current Folder to create the function handles:

run E:/testdir/createFhandles

3 You can now execute one of the functions by means of its handle.

fhset(item, value)

Making Toolbox File Changes Visible to MATLAB
Unlike functions in user-supplied folders, MATLAB function files (and
MEX-files) in the matlabroot/toolbox folders are not time-stamp checked,
so MATLAB does not automatically see changes to them. If you modify one of
these files, and then rerun it, you may find that the behavior does not reflect
the changes that you made. This is most likely because MATLAB is still using
the previously loaded version of the file.

To force MATLAB to reload a function from disk, you need to explicitly clear
the function from memory using clear functionname. Note that there are
rare cases where clear will not have the desired effect, (for example, if the
file is locked, or if it is a class constructor and objects of the given class exist
in memory).

Similarly, MATLAB does not automatically detect the presence of new files in
matlabroot/toolbox folders. If you add (or remove) files from these folders,
use rehash toolbox to force MATLAB to see your changes. Note that if you
use the MATLAB Editor to create files, these steps are unnecessary, as the
Editor automatically informs MATLAB of such changes.

Making Nontoolbox File Changes Visible to MATLAB
For functions outside of the toolbox folders, MATLAB sees the changes made
to these files by comparing timestamps and reloads any file that has changed
the next time you execute the corresponding function.

17-36

MATLAB® Path

If MATLAB does not see the changes you make to one of these files, try
clearing the old copy of the function from memory using clear functionname.
You can verify that MATLAB has cleared the function using inmem to list all
functions currently loaded into memory.

Change Notification on Windows
If MATLAB, running on Windows, is unable to see new files or changes you
have made to an existing file, the problem may be related to operating system
change notification handles.

Type the following for more information:

help changeNotification
help changeNotificationAdvanced

17-37

17 Programming Tips

Program Control

In this section...

“Using break, continue, and return” on page 17-38

“Using switch Versus if” on page 17-39

“MATLAB case Evaluates Strings” on page 17-39

“Multiple Conditions in a case Statement” on page 17-39

“Implicit Break in switch-case” on page 17-39

“Variable Scope in a switch” on page 17-40

“Catching Errors with try-catch” on page 17-40

“Nested try-catch Blocks” on page 17-41

“Forcing an Early Return from a Function” on page 17-41

Using break, continue, and return
It is easy to confuse the break, continue, and return functions as they are
similar in some ways. Make sure you use these functions appropriately.

Function Where to Use It Description

break for or while loops Exits the loop in which it
appears. In nested loops,
control passes to the next
outer loop.

continue for or while loops Skips any remaining
statements in the current
loop. Control passes to next
iteration of the same loop.

return Anywhere Immediately exits the
function in which it appears.
Control passes to the caller
of the function.

17-38

Program Control

Using switch Versus if
It is possible, but usually not advantageous, to implement switch-case
statements using if-elseif instead. See pros and cons in the table.

switch-case Statements if-elseif Statements

Easier to read. Can be difficult to read.

Can compare strings of different
lengths.

You need strcmp to compare strings
of different lengths.

Test for equality only. Test for equality or inequality.

MATLAB case Evaluates Strings
A useful difference between switch-case statements in MATLAB and C is
that you can specify string values in MATLAB case statements, which you
cannot do in C.

switch(method)
case 'linear'

disp('Method is linear')
case 'cubic'

disp('Method is cubic')
end

Multiple Conditions in a case Statement
You can test against more than one condition with switch. The first case
below tests for either a linear or bilinear method by using a cell array
in the case statement.

switch(method)
case {'linear', 'bilinear'}

disp('Method is linear or bilinear')
case (<and so on>)

end

Implicit Break in switch-case
In C, if you do not end each case with a break statement, code execution
falls through to the following case. In MATLAB, case statements do not fall

17-39

17 Programming Tips

through; only one case may execute. Using break within a case statement is
not only unnecessary, it is also invalid and generates a warning.

In this example, if result is 52, only the first disp statement executes, even
though the second is also a valid match:

switch(result)
case 52

disp('result is 52')
case {52, 78}

disp('result is 52 or 78')
end

Variable Scope in a switch
Since MATLAB executes only one case of any switch statement, variables
defined within one case are not known in the other cases of that switch
statement. The same holds true for if-elseif statements.

In these examples, you get an error when choice equals 2, because x is
undefined.

-- SWITCH-CASE -- -- IF-ELSEIF --
switch choice

case 1 if choice == 1
x = -pi:0.01:pi; x = -pi:0.01:pi;

case 2 elseif choice == 2
plot(x, sin(x)); plot(x, sin(x));

end end

Catching Errors with try-catch
When you have statements in your code that could possibly generate
unwanted results, put those statements into a try-catch block that will catch
any errors and handle them appropriately.

The example below shows a try-catch block within a function that multiplies
two matrices. If a statement in the try segment of the block fails, control
passes to the catch segment. In this case, the catch statements check the
error message that was issued (returned in MException object, err) and
respond appropriately:

17-40

Program Control

try
X = A * B

catch err
errmsg = err.message;
if(strfind(errmsg, 'Inner matrix dimensions'))

disp('** Wrong dimensions for matrix multiply')
end

For more information: See “The try-catch Statement” on page 18-18.

Nested try-catch Blocks
You can also nest try-catch blocks, as shown here. You can use this to
attempt to recover from an error caught in the first try section:

try
statement1 % Try to execute statement1

catch
try

statement2 % Attempt to recover from error
catch

disp 'Operation failed' % Handle the error
end

end

Forcing an Early Return from a Function
To force an early return from a function, place a return statement in the
function at the point where you want to exit. For example,

if <done>
return

end

17-41

17 Programming Tips

Save and Load

In this section...

“Saving Data from the Workspace” on page 17-42

“Loading Data into the Workspace” on page 17-42

“Viewing Variables in a MAT-File” on page 17-43

“Appending to a MAT-File” on page 17-43

“Save and Load on Startup or Quit” on page 17-44

“Saving to an ASCII File” on page 17-44

Saving Data from the Workspace
To save data from your workspace, you can do any of the following:

• Copy from the MATLAB Command Window and paste into a text file.

• Record part of your session in a diary file, and then edit the file in a text
editor.

• Save to a binary or ASCII file using the save function.

• Save spreadsheet, scientific, image, or audio data with appropriate
function.

• Save to a file using low-level file I/O functions (fwrite, fprintf, ...).

For more information: See Saving the Current Workspace and “Writing to
Text Data Files with Low-Level I/O”.

Loading Data into the Workspace
Similarly, to load new or saved data into the workspace, you can do any of
the following:

• Enter or paste data at the command line.

• Create a script file to initialize large matrices or data structures.

• Read a binary or ASCII file using load.

17-42

Save and Load

• Load spreadsheet, scientific, image, or audio data with appropriate
function.

• Load from a file using low-level file I/O functions (fread, fscanf, ...).

For more information: See Loading a Saved Workspace and Importing
Data and “Importing Data”.

Viewing Variables in a MAT-File
To see what variables are saved in a MAT-file, use who or whos as shown
here (the .mat extension is not required). who returns a cell array and whos
returns a structure array.

mydataVariables = who('-file', 'mydata.mat');

Appending to a MAT-File
To save additional variables to an existing MAT-file, use

save matfilename -append

Any variables you save that do not yet exist in the MAT-file are added to
the file. Any variables you save that already exist in the MAT-file overwrite
the old values.

Note Saving with the -append switch does not append additional elements to
an array that is already saved in a MAT-file. See the example below.

In this example, the second save operation does not concatenate new elements
to vector A, (making A equal to [1 2 3 4 5 6 7 8]) in the MAT-file. Instead,
it replaces the 5 element vector, A, with a 3 element vector, also retaining all
other variables that were stored on the first save operation.

A = [1 2 3 4 5]; B = 12.5; C = rand(4);
save savefile;
A = [6 7 8];
save savefile A -append;

17-43

17 Programming Tips

Save and Load on Startup or Quit
You can automatically save your variables at the end of each MATLAB session
by creating a finish.m file to save the contents of your base workspace every
time you quit MATLAB. Load these variables back into your workspace at
the beginning of each session by creating a startup.m file that uses the load
function to load variables from your MAT-file.

For more information: See the startup and finish function reference
pages.

Saving to an ASCII File
When you save matrix data to an ASCII file using save -ascii, MATLAB
combines the individual matrices into one collection of numbers. Variable
names are not saved. If this is not acceptable for your application, use
fprintf to store your data instead.

For more information: See “Writing to Delimited Data Files”.

17-44

Files and Filenames

Files and Filenames

In this section...

“Naming Functions” on page 17-45

“Naming Other Files” on page 17-45

“Passing Filenames as Arguments” on page 17-46

“Passing Filenames to ASCII Files” on page 17-46

“Determining Filenames at Run-Time” on page 17-46

“Returning the Size of a File” on page 17-46

Naming Functions
A valid name for a MATLAB function file is composed of a string of letters,
digits, and underscores, totaling not more than namelengthmax characters
and beginning with a letter.

N = namelengthmax
N =

63

Since variables must obey similar rules, you can use the isvarname function
to check whether a filename (minus its .m file extension) is valid for a
MATLAB function file.

isvarname mfilename

Naming Other Files
The names of other files that MATLAB interacts with (e.g., MAT, MEX, and
MDL-files) follow the same rules as the MATLAB function files, but may
be of any length.

Depending on your operating system, you may be able to include certain
nonalphanumeric characters in your filenames. Check your operating system
manual for information on valid filename restrictions.

17-45

17 Programming Tips

Passing Filenames as Arguments
In MATLAB commands, you can specify a filename argument using the
MATLAB command or function syntax. For example, either of the following
are acceptable. (The .mat file extension is optional for save and load).

load mydata.mat % Command syntax
load('mydata.mat') % Function syntax

If you assign the output to a variable, you must use the function syntax.

savedData = load('mydata.mat')

Passing Filenames to ASCII Files
ASCII files are specified as follows. Here, the file extension is required.

load mydata.dat -ascii % Command syntax
load('mydata.dat','-ascii') % Function syntax

Determining Filenames at Run-Time
There are several ways that your function code can work on specific files
without you having to hardcode their filenames into the program. You can

• Pass the filename in as an argument

function myfun(datafile)

• Prompt for the filename using the input function

filename = input('Enter name of file: ', 's');

• Browse for the file using the uigetfile function

[filename, pathname] =
uigetfile('*.mat', 'Select MAT-file');

For more information: See the input and uigetfile function reference
pages.

Returning the Size of a File
Two ways to have your program determine the size of a file are shown here.

17-46

Files and Filenames

-- METHOD #1 -- -- METHOD #2 --
s = dir('myfile.dat'); fid = fopen('myfile.dat');
filesize = s.bytes fseek(fid, 0, 'eof');

filesize = ftell(fid)
fclose(fid);

The dir function also returns the filename (s.name), last modification date
(s.date), and whether or not it is a folder (s.isdir).

(The second method requires read access to the file.)

For more information: See the fopen, fseek, ftell, and fclose function
reference pages.

17-47

17 Programming Tips

Input/Output

In this section...

“Common I/O Functions” on page 17-48

“Loading Mixed Format Data” on page 17-48

“Reading Files with Different Formats” on page 17-49

“Interactive Input into Your Program” on page 17-49

For more information and examples on importing and exporting data, see
MATLAB Data Import and Export.

Common I/O Functions
The most commonly used, high-level, file I/O functions in MATLAB are save
and load. For help on these, type doc save or doc load.

Functions for I/O to text files with delimited values are textscan, dlmread,
dlmwrite.

To select and import data from files interactively, select File > Import Data.

For more information: See “Supported File Formats”.

Loading Mixed Format Data
To load data that is in mixed formats, use textscan instead of load. The
textscan function lets you specify the format of each piece of data.

If the first line of file mydata.dat is

Sally 12.34 45

Read the first line of the file as a free format file using the % format:

fid = fopen('mydata.dat');
c = textscan(fid, '%s %f %d', 1);
fclose(fid);

17-48

Input/Output

returns

c =
{1x1 cell} [12.3400] [45]

Reading Files with Different Formats
Attempting to read data from a file that was generated on a different platform
may result in an error because the binary formats of the platforms may differ.
Using the fopen function, you can specify a machine format when you open
the file to avoid these errors.

Interactive Input into Your Program
Your program can accept interactive input from users during execution. Use
the input function to prompt the user for input, and then read in a response.
When executed, input causes the program to display your prompt, pause
while a response is entered, and then resume when the Enter key is pressed.

17-49

17 Programming Tips

Starting MATLAB

Getting MATLAB to Start Up Faster
Here are some things that you can do to make MATLAB start up faster.

• Make sure toolbox path caching is enabled.

• Make sure that the system on which MATLAB is running has enough RAM.

• Choose only the windows you need in the MATLAB desktop.

• Close the Help browser before exiting MATLAB. When you start your next
session, MATLAB will not open the Help browser, and thus will start faster.

• If disconnected from the network, check the LM_LICENSE_FILE variable.
See http://www.mathworks.com/support/solutions/data/1-17VEB.html for a
more detailed explanation.

For more information: See Toolbox Path Caching in MATLAB.

17-50

http://www.mathworks.com/support/solutions/data/1-17VEB.html

Operating System Compatibility

Operating System Compatibility

In this section...

“Executing O/S Commands from MATLAB” on page 17-51

“Searching Text with grep” on page 17-51

“Constructing Paths and Filenames” on page 17-51

“Finding the MATLAB Root Folder” on page 17-52

“Temporary Directories and Filenames” on page 17-52

Executing O/S Commands from MATLAB
To execute a command from your operating system prompt without having to
exit MATLAB, precede the command with the MATLAB ! operator.

On Windows, you can add an ampersand (&) to the end of the line to make the
output appear in a separate window.

For more information: See Running External Programs and the system
and dos function reference pages.

Searching Text with grep
grep is a powerful tool for performing text searches in files on UNIX systems.
To grep from within MATLAB, precede the command with an exclamation
point (!grep).

For example, to search for the word warning in all MATLAB function files of
the Current Folder, ignoring case, you would use

!grep -i 'warning' *.m

Constructing Paths and Filenames
Use the fullfile function to construct path names and filenames rather
than entering them as strings into your programs. In this way, you always
get the correct path specification, regardless of which operating system you
are using at the time.

17-51

17 Programming Tips

Finding the MATLAB Root Folder
The matlabroot function returns the location of the MATLAB installation
on your system. Use matlabroot to create a path to MATLAB and toolbox
folders that does not depend on a specific platform or MATLAB version.

The following example uses matlabroot with fullfile to return a
platform-independent path to the general toolbox folder:

fullfile(matlabroot,'toolbox','matlab','general')

Temporary Directories and Filenames
If you need to locate the folder on your system that has been designated to
hold temporary files, use the tempdir function. tempdir returns a string
that specifies the path to this folder.

To create a new file in this folder, use the tempname function. tempname
returns a string that specifies the path to the temporary file folder, plus a
unique filename.

For example, to store some data in a temporary file, you might issue the
following command first.

fid = fopen(tempname, 'w');

17-52

For More Information

For More Information

In this section...

“Current CSSM” on page 17-53

“Archived CSSM” on page 17-53

“MATLAB Technical Support” on page 17-53

“MATLAB Central” on page 17-53

“MATLAB Newsletters (Digest, News & Notes)” on page 17-53

“MATLAB Documentation” on page 17-53

“MATLAB Index of Examples” on page 17-54

Current CSSM

http://www.mathworks.com/matlabcentral/newsreader

Archived CSSM

http://mathforum.org/kb/forum.jspa?forumID=80

MATLAB Technical Support

http://www.mathworks.com/support/

MATLAB Central

http://www.mathworks.com/matlabcentral/

MATLAB Newsletters (Digest, News & Notes)

http://www.mathworks.com/company/newsletters/index.html

MATLAB Documentation

http://www.mathworks.com/help/

17-53

http://www.mathworks.com/matlabcentral/newsreader
http://mathforum.org/kb/forum.jspa?forumID=80
http://www.mathworks.com/support/
http://www.mathworks.com/matlabcentral/
http://www.mathworks.com/company/newsletters/index.html
http://www.mathworks.com/help/

17 Programming Tips

MATLAB Index of Examples

http://www.mathworks.com/help/techdoc/demo_example.html

17-54

http://www.mathworks.com/help/techdoc/demo_example.html

Software Development

• Chapter 18, “Error Handling”

• Chapter 19, “Program Scheduling”

• Chapter 20, “Performance”

• Chapter 21, “Memory Usage”

• Chapter 22, “Create Help and Demos”

18

Error Handling

• “Error Reporting in a MATLAB Application” on page 18-2

• “Capturing Information About the Error” on page 18-5

• “Throwing an Exception” on page 18-16

• “Responding to an Exception” on page 18-18

• “Warnings” on page 18-23

• “Warning Control” on page 18-25

• “Debugging Errors and Warnings” on page 18-37

18 Error Handling

Error Reporting in a MATLAB Application

In this section...

“Overview” on page 18-2

“Getting an Exception at the Command Line” on page 18-2

“Getting an Exception in Your Program Code” on page 18-3

“Generating a New Exception” on page 18-4

Overview
No matter how carefully you plan and test the programs you write, they
may not always run as smoothly as expected when executed under different
conditions. It is always a good idea to include error checking in programs to
ensure reliable operation under all conditions.

In the MATLAB software, you can decide how your programs respond
to different types of errors. You may want to prompt the user for more
input, display extended error or warning information, or perhaps repeat a
calculation using default values. The error-handling capabilities in MATLAB
help your programs check for particular error conditions and execute the
appropriate code depending on the situation.

When MATLAB detects a severe fault in the command or program it is
running, it collects information about what was happening at the time of the
error, displays a message to help the user understand what went wrong, and
terminates the command or program. This is called throwing an exception.
You can get an exception while entering commands at the MATLAB command
prompt or while executing your program code.

Getting an Exception at the Command Line
If you get an exception at the MATLAB prompt, you have several options on
how to deal with it as described below.

Determine the Fault from the Error Message
Evaluate the error message MATLAB has displayed. Most error messages
attempt to explain at least the immediate cause of the program failure. There

18-2

Error Reporting in a MATLAB® Application

is often sufficient information to determine the cause and what you need to
do to remedy the situation.

Review the Failing Code
If the function in which the error occurred is implemented as a MATLAB
program file, the error message should include a line that looks something
like this:

surf

Error using surf (line 50)
Not enough input arguments.

The text includes the name of the function that threw the error (surf, in this
case) and shows the failing line number within that function’s program file.
Click the line number; MATLAB opens the file and positions the cursor at the
location in the file where the error originated. You may be able to determine
the cause of the error by examining this line and the code that precedes it.

Step Through the Code in the Debugger
You can use the MATLAB Debugger to step through the failing code. Click
the underlined error text to open the file in the MATLAB Editor at or near the
point of the error. Next, click the hyphen at the beginning of that line to set a
breakpoint at that location. When you rerun your program, MATLAB pauses
execution at the breakpoint and enables you to step through the program code.
The command dbstop on error is also helpful in finding the point of error.

See the documentation on “Debugging Process and Features” for more
information.

Getting an Exception in Your Program Code
When you are writing your own program in a program file, you can catch
exceptions and attempt to handle or resolve them instead of allowing your
program to terminate. When you catch an exception, you interrupt the normal
termination process and enter a block of code that deals with the faulty
situation. This block of code is called a catch block.

Some of the things you might want to do in the catch block are:

18-3

18 Error Handling

• Examine information that has been captured about the error.

• Gather further information to report to the user.

• Try to accomplish the task at hand in some other way.

• Clean up any unwanted side effects of the error.

When you reach the end of the catch block, you can either continue executing
the program, if possible, or terminate it.

The documentation on “Capturing Information About the Error” on page
18-5 describes how to acquire information about what caused the error, and
“Responding to an Exception” on page 18-18 presents some ideas on how
to respond to it.

Generating a New Exception
When your program code detects a condition that will either make the
program fail or yield unacceptable results, it should throw an exception. This
procedure

• Saves information about what went wrong and what code was executing at
the time of the error.

• Gathers any other pertinent information about the error.

• Instructs MATLAB to throw the exception.

The documentation on “Capturing Information About the Error” on page 18-5
describes how to use an MException object to capture information about the
error, and “Throwing an Exception” on page 18-16 explains how to initiate
the exception process.

18-4

Capturing Information About the Error

Capturing Information About the Error

In this section...

“Overview” on page 18-5

“The MException Class” on page 18-5

“Properties of the MException Class” on page 18-7

“Methods of the MException Class” on page 18-14

Overview
When the MATLAB software throws an exception, it captures information
about what caused the error in a data structure called an MException object.
This object is an instance of the MATLAB MException class. You can obtain
access to the MException object by catching the exception before your program
aborts and accessing the object constructed for this particular error via the
catch command. When throwing an exception in response to an error in
your own code, you will have to create a new MException object and store
information about the error in that object.

This section describes the MException class and objects constructed from
that class:

Information on how to use this class is presented in later sections on
“Responding to an Exception” on page 18-18 and “Throwing an Exception” on
page 18-16.

The MException Class
The figure shown below illustrates one possible configuration of an object of
the MException class. The object has four properties: identifier, message,
stack, and cause. Each of these properties is implemented as a field of
the structure that represents the MException object. The stack field is an
N-by-1 array of additional structures, each one identifying a function, and
line number from the call stack. The cause field is an M-by-1 cell array of
MException objects, each representing an exception that is related to the
current one.

18-5

18 Error Handling

See “Properties of the MException Class” on page 18-7 for a full description of
these properties.

230��$����
����4�5���

230��$����
����4�5���

230��$����
����4�5���

230��$����
����4�5���

230��$����
����4�5���

230��$����
����4�5���

230��$����
����4�5���

230��$����
����4�5���

Object Constructor
Any code that detects an error and throws an exception must also construct
an MException object in which to record and transfer information about the
error. The syntax of the MException constructor is

ME = MException(identifier, message)

18-6

Capturing Information About the Error

where identifier is a MATLAB message identifier of the form

component:mnemonic

that is enclosed in single quotes, and message is a text string, also enclosed
in single quotes, that describes the error. The output ME is the resulting
MException object.

If you are responding to an exception rather than throwing one, you do
not have to construct an MException object. The object has already been
constructed and populated by the code that originally detected the error.

Properties of the MException Class
The MException class has four properties. Each of these properties is
implemented as a field of the structure that represents the MException object.
Each of these properties is described in the sections below and referenced in
the sections on “Responding to an Exception” on page 18-18 and “Throwing an
Exception” on page 18-16. All are read-only; their values cannot be changed.

The MException properties are:

• identifier

• message

• stack

• cause

Repeating the surf example shown above, but this time catching the
exception, you can see the four properties of the MException object structure.
(This example uses try-catch in an atypical fashion. See the section on “The
try-catch Statement” on page 18-18 for more information on using try-catch).

try
surf

catch ME
ME

end

18-7

18 Error Handling

Run this at the command line and MATLAB returns the contents of the
MException object:

ME =
MException object with properties:

identifier: 'MATLAB:narginchk:notEnoughInputs'
message: 'Not enough input arguments.'

stack: [1x1 struct]
cause: {}

The stack field shows the filename, function, and line number where the
exception was thrown:

ME.stack
ans =

file: 'matlabroot\toolbox\matlab\graph3d\surf.m'
name: 'surf'
line: 54

The cause field is empty in this case. Each field is described in more detail
in the sections that follow.

Message Identifiers
A message identifier is a tag that you attach to an error or warning statement
that makes that error or warning uniquely recognizable by MATLAB. You can
use message identifiers with error reporting to better identify the source of
an error, or with warnings to control any selected subset of the warnings in
your programs.

The message identifier is a read-only character string that specifies a
component and a mnemonic label for an error or warning. The format of
a simple identifier is

component:mnemonic

A colon separates the two parts of the identifier: component and mnemonic.
If the identifier uses more than one component, then additional colons are
required to separate them. A message identifier must always contain at
least one colon.

18-8

Capturing Information About the Error

Some examples of message identifiers are

MATLAB:rmpath:DirNotFound
MATLAB:odearguments:InconsistentDataType
Simulink:actionNotTaken
TechCorp:OpenFile:notFoundInPath

Both the component and mnemonic fields must adhere to the following syntax
rules:

• No white space (space or tab characters) is allowed anywhere in the
identifier.

• The first character must be alphabetic, either uppercase or lowercase.

• The remaining characters can be alphanumeric or an underscore.

There is no length limitation to either the component or mnemonic. The
identifier can also be an empty string.

Component Field. The component field specifies a broad category under
which various errors and warnings can be generated. Common components
are a particular product or toolbox name, such as MATLAB or Control, or
perhaps the name of your company, such as TechCorp in the preceding
example.

You can also use this field to specify a multilevel component. The following
statement has a three-level component followed by a mnemonic label:

TechCorp:TestEquipDiv:Waveform:obsoleteSyntax

The component field enables you to guarantee the uniqueness of each
identifier. Thus, while the internal MATLAB code might use a certain
warning identifier like MATLAB:InconsistentDataType, that does not
preclude you from using the same mnemonic, as long as you precede it with
a unique component. For example,

warning('TechCorp:InconsistentDataType', ...
'Value %s is inconsistent with existing properties.' ...
sprocketDiam)

18-9

18 Error Handling

Mnemonic Field. The mnemonic field is a string normally used as a tag
relating to the particular message. For example, when reporting an error
resulting from the use of ambiguous syntax, a simple component and
mnemonic such as the following might be appropriate:

MATLAB:ambiguousSyntax

Message Identifiers in an MException Object. When throwing an
exception, create an appropriate identifier and save it to the MException
object at the time you construct the object using the syntax

ME = MException(identifier, string)

For example,

ME = MException('AcctError:NoClient', ...
'Client name not recognized.');

ME.identifier
ans =

AcctError:NoClient

When responding to an exception, you can extract the message identifier from
the MException object as shown here. Using the surf example again,

try
surf

catch ME
id = ME.identifier

end

id =
MATLAB:narginchk:notEnoughInputs

Text of the Error Message
An error message in MATLAB is a read-only character string issued by the
program code and returned in the MException object. This message can assist
the user in determining the cause, and possibly the remedy, of the failure.

18-10

Capturing Information About the Error

When throwing an exception, compose an appropriate error message and
save it to the MException object at the time you construct the object using
the syntax

ME = MException(identifier, string)

If your message string requires formatting specifications, like those available
with the sprintf function, use this syntax for the MException constructor:

ME = MException(identifier, formatstring, arg1, arg2, ...)

For example,

S = 'Accounts'; f1 = 'ClientName';
ME = MException('AcctError:Incomplete', ...

'Field ''%s.%s'' is not defined.', S, f1);

ME.message
ans =

Field 'Accounts.ClientName' is not defined.

When responding to an exception, you can extract the error message from the
MException object as follows:

try
surf

catch ME
msg = ME.message

end

msg =
Not enough input arguments.

The Call Stack
The stack field of the MException object identifies the line number,
function, and filename where the error was detected. If the error occurs in
a called function, as in the following example, the stack field contains the
line number, function name, and filename not only for the location of the
immediate error, but also for each of the calling functions. In this case, stack

18-11

18 Error Handling

is an N-by-1 array, where N represents the depth of the call stack. That is, the
stack field displays the function name and line number where the exception
occurred, the name and line number of the caller, the caller’s caller, etc.,
until the top-most function is reached.

When throwing an exception, MATLAB stores call stack information in the
stack field. You cannot write to this field; access is read-only.

For example, suppose you have three functions that reside in two separate
files:

mfileA.m
=========================

.

.
42 function A1(x, y)
43 B1(x, y);

mfileB.m
=========================

.

.
8 function B1(x, y)
9 B2(x, y)

.

.
26 function B2(x, y)
27 .
28 .
29 .
30 .
31 % Throw exception here

Catch the exception in variable ME and then examine the stack field:

for k=1:length(ME.stack)
ME.stack(k)

end

18-12

Capturing Information About the Error

ans =
file: 'C:\matlab\test\mfileB.m'
name: 'B2'
line: 31

ans =
file: 'C:\matlab\test\mfileB.m'
name: 'B1'
line: 9

ans =
file: 'C:\matlab\test\mfileA.m'
name: 'A1'
line: 43

The Cause Array
In some situations, it can be important to record information about not only
the one command that caused execution to stop, but also other exceptions that
your code caught. You can save these additional MException objects in the
cause field of the primary exception.

The cause field of an MException is an optional cell array of related
MException objects. You must use the following syntax when adding objects
to the cause cell array:

primaryException = addCause(primaryException, secondaryException)

This example attempts to assign an array D to variable X. If the D array
does not exist, the code attempts to load it from a MAT-file and then retries
assigning it to X. If the load fails, a new MException object (ME3) is constructed
to store the cause of the first two errors (ME1 and ME2):

try
X = D(1:25)

catch ME1
try

filename = 'test200';
load(filename);
X = D(1:25)

catch ME2
ME3 = MException('MATLAB:LoadErr', ...

18-13

18 Error Handling

'Unable to load from file %s', filename);
ME3 = addCause(ME3, ME1);
ME3 = addCause(ME3, ME2);

end
end

There are two exceptions in the cause field of ME3:

ME3.cause
ans =

[1x1 MException]
[1x1 MException]

Examine the cause field of ME3 to see the related errors:

ME3.cause{:}
ans =

MException object with properties:

identifier: 'MATLAB:UndefinedFunction'
message: 'Undefined function or method 'D' for input

arguments of type 'double'.'
stack: [0x1 struct]
cause: {}

ans =

MException object with properties:

identifier: 'MATLAB:load:couldNotReadFile'
message: 'Unable to read file test204: No such file or

directory.'
stack: [0x1 struct]
cause: {}

Methods of the MException Class
There are ten methods that you can use with the MException class. The
names of these methods are case-sensitive. See the MATLAB function
reference pages for more information.

18-14

Capturing Information About the Error

Method Name Description

addCause Append an MException to the cause
field of another MException.

disp Display an MException object.

eq Compare MException objects for
equality.

getReport Return a formatted message based on
the current exception.

isequal Compare MException objects for
equality.

last Return the last uncaught exception.
This is a static method.

ne Compare MException objects for
inequality.

rethrow Reissue an exception that has previously
been caught.

throw Issue an exception.

throwAsCaller Issue an exception, but omit the current
stack frame from the stack field.

18-15

18 Error Handling

Throwing an Exception
When your program detects a fault that will keep it from completing as
expected or will generate erroneous results, you should halt further execution
and report the error by throwing an exception. The basic steps to take are

1 Detect the error. This is often done with some type of conditional statement,
such as an if statement that checks the output of the current operation.

2 Construct an MException object to represent the error. Add a message
identifier string and error message string to the object when calling the
constructor.

3 If there are other exceptions that may have contributed to the current error,
you can store the MException object for each in the cause field of a single
MException that you intend to throw. Use the addCause method for this.

4 Use the throw or throwAsCaller function to have the MATLAB software
issue the exception. At this point, MATLAB stores call stack information in
the stack field of the MException, exits the currently running function,
and returns control to either the keyboard or an enclosing catch block in a
calling function.

This example illustrates throwing an exception using the steps just described:

function check_results(resultsArr, dataFile)
minValue = 0.09; maxValue = 2.14;

% 1) Detect the error.
if any(resultsArr < minValue) || any(resultsArr > maxValue)

% 2) Construct an MException object to represent the error.
err = MException('ResultChk:OutOfRange', ...

'Resulting value is outside expected range');
fileInfo = dir(dataFile);

% 3) Store any information contributing to the error.
if datenum(fileInfo.date) < datenum('Oct09','mmmyy')

errCause = MException('ResultChk:BadInput', ...
'Input file %s is out of date.', dataFile);

18-16

Throwing an Exception

err = addCause(err, errCause);
end

% 4) Throw the exception to stop execution and display
an error message.

throw(err)
end

If the program detects the OutOfRange condition, the throw(err) statement
throws an exception at the end. If the BadInput condition is also detected, the
program also displays this as the cause:

resultsArr = [1.63, 2.05, 0.91, 2.16, 1.5, 2.11 0.72];
check_results(resultsArr, 'run33.dat')

Error using check_results (line 20)
Resulting value is outside expected range

Caused by:
Input file run33.dat is out of date.

18-17

18 Error Handling

Responding to an Exception

In this section...

“Overview” on page 18-18

“The try-catch Statement” on page 18-18

“Suggestions on How to Handle an Exception” on page 18-20

Overview
As stated earlier, the MATLAB software, by default, terminates the currently
running program when an exception is thrown. If you catch the exception in
your program, however, you can capture information about what went wrong,
and deal with the situation in a way that is appropriate for the particular
condition. This requires a try-catch statement.

This section covers the following topics:

The try-catch Statement
When you have statements in your code that could generate undesirable
results, put those statements into a try-catch block that catches any errors
and handles them appropriately.

A try-catch statement looks something like the following pseudocode. It
consists of two parts:

• A try block that includes all lines between the try and catch statements.

• A catch block that includes all lines of code between the catch and end
statements.

try
Perform one ...

or more operations
A catch ME

Examine error info in exception object ME
Attempt to figure out what went wrong
Either attempt to recover, or clean up and abort

18-18

Responding to an Exception

end

B Program continues

The program executes the statements in the try block. If it encounters an
error, it skips any remaining statements in the try block and jumps to the
start of the catch block (shown here as point A). If all operations in the try
block succeed, then execution skips the catch block entirely and goes to the
first line following the end statement (point B).

Specifying the try, catch, and end commands and also the code of the try
and catch blocks on separate lines is recommended. If you combine any of
these components on the same line, separate them with commas:

try, surf, catch ME, ME.stack, end
ans =

file: 'matlabroot\toolbox\matlab\graph3d\surf.m'
name: 'surf'
line: 54

Note You cannot define nested functions within a try or catch block.

The Try Block
On execution, your code enters the try block and executes each statement as
if it were part of the regular program. If no errors are encountered, MATLAB
skips the catch block entirely and continues execution following the end
statement. If any of the try statements fail, MATLAB immediately exits
the try block, leaving any remaining statements in that block unexecuted,
and enters the catch block.

The Catch Block
The catch command marks the start of a catch block and provides access to a
data structure that contains information about what caused the exception.
This is shown as the variable ME in the preceding pseudocode. This data
structure is an object of the MATLAB MException class. When an exception
occurs, MATLAB constructs an instance of this class and returns it in the
catch statement that handles that error.

18-19

18 Error Handling

You are not required to specify any argument with the catch statement.
If you do not need any of the information or methods provided by the
MException object, just specify the catch keyword alone.

The MException object is constructed by internal code in the program that
fails. The object has properties that contain information about the error
that can be useful in determining what happened and how to proceed. The
MException object also provides access to methods that enable you to respond
to the exception. See the section on “The MException Class” on page 18-5 to
find out more about the MException class.

Having entered the catch block, MATLAB executes the statements in
sequence. These statements can attempt to

• Attempt to resolve the error.

• Capture more information about the error.

• Switch on information found in the MException object and respond
appropriately.

• Clean up the environment that was left by the failing code.

The catch block often ends with a rethrow command. The rethrow causes
MATLAB to exit the current function, keeping the call stack information as it
was when the exception was first thrown. If this function is at the highest
level, that is, it was not called by another function, the program terminates. If
the failing function was called by another function, it returns to that function.
Program execution continues to return to higher level functions, unless any
of these calls were made within a higher-level try block, in which case the
program executes the respective catch block.

More information about the MException class is provided in the section
“Capturing Information About the Error” on page 18-5.

Suggestions on How to Handle an Exception
The following example reads the contents of an image file. The try block
attempts to open and read the file. If either the open or read fails, the
program catches the resulting exception and saves the MException object in
the variable ME1.

18-20

Responding to an Exception

The catch block in the example checks to see if the specified file could not be
found. If so, the program allows for the possibility that a common variation
of the filename extension (e.g., jpeg instead of jpg) was used by retrying
the operation with a modified extension. This is done using a try-catch
statement nested within the original try-catch.

function d_in = read_image(filename)
[path name ext] = fileparts(filename);
try

fid = fopen(filename, 'r');
d_in = fread(fid);

catch ME1
% Get last segment of the error message identifier.
idSegLast = regexp(ME1.identifier, '(?<=:)\w+$', 'match');

% Did the read fail because the file could not be found?
if strcmp(idSegLast, 'InvalidFid') && ...

~exist(filename, 'file')

% Yes. Try modifying the filename extension.
switch ext
case '.jpg' % Change jpg to jpeg

filename = strrep(filename, '.jpg', '.jpeg')
case '.jpeg' % Change jpeg to jpg

filename = strrep(filename, '.jpeg', '.jpg')
case '.tif' % Change tif to tiff

filename = strrep(filename, '.tif', '.tiff')
case '.tiff' % Change tiff to tif

filename = strrep(filename, '.tiff', '.tif')
otherwise

fprintf('File %s not found\n', filename);
rethrow(ME1);

end

% Try again, with modifed filenames.
try

fid = fopen(filename, 'r');
d_in = fread(fid);

catch ME2
fprintf('Unable to access file %s\n', filename);

18-21

18 Error Handling

ME2 = addCause(ME2, ME1);
rethrow(ME2)

end
end

end

This example illustrates some of the actions that you can take in response
to an exception:

• Compare the identifier field of the MException object against possible
causes of the error.

• Use a nested try-catch statement to retry the open and read operations
using a known variation of the filename extension.

• Display an appropriate message in the case that the file truly does not
exist and then rethrow the exception.

• Add the first MException object to the cause field of the second.

• Rethrow the exception. This stops program execution and displays the
error message.

Cleaning up any unwanted results of the error is also advisable. For example,
your program may have allocated a significant amount of memory that it
no longer needs.

18-22

Warnings

Warnings

In this section...

“Reporting a Warning” on page 18-23

“Identifying the Cause” on page 18-24

Reporting a Warning
Like error, the warning function alerts the user of unexpected conditions
detected when running a program. However, warning does not halt the
execution of the program. It displays the specified warning message and
then continues.

Use warning in your code to generate a warning message during execution.
Specify the message string as the input argument to warning. For example,

warning('Input must be a string')

Warnings also differ from errors in that you can disable any warnings that
you do not want to see. You do this by invoking warning with certain control
parameters. See “Warning Control” on page 18-25 for more information.

Formatted Message Strings
The warning message string you specify can contain formatting conversion
characters, such as those used with the MATLAB sprintf function. Make
the warning string the first argument, and add any variables used by the
conversion as subsequent arguments.

warning('formatted_warningmsg', arg1, arg2, ...)

For example, if your program cannot process a given parameter, you might
report a warning with

warning('Ambiguous parameter name, "%s".', param)

MATLAB converts special characters like %d and %s in the warning message
string only when you specify more than one input argument with warning.
See “Formatted Message Strings” on page 18-23 for information.

18-23

18 Error Handling

Message Identifiers
Use a message identifier argument with warning to attach a unique tag to a
warning message. MATLAB uses this tag to better identify the source of a
warning. The first argument in this example is the message identifier.

warning('MATLAB:paramAmbiguous', ...
'Ambiguous parameter name, "%s".', param)

See “Warning Control Statements” on page 18-27 for more information on
how to use identifiers with warnings.

Identifying the Cause
The lastwarn function returns a string containing the last warning message
issued by MATLAB. Use this to enable your program to identify the cause
of a warning that has just been issued. To return the most recent warning
message to the variable warnmsg, type

warnmsg = lastwarn;

You can also change the text of the last warning message with a new message
or with an empty string as shown here:

lastwarn('newwarnmsg'); % Replace last warning with new string
lastwarn(''); % Replace last warning with empty string

18-24

Warning Control

Warning Control

In this section...

“Overview” on page 18-25

“Warning Statements” on page 18-26

“Warning Control Statements” on page 18-27

“Output from Control Statements” on page 18-30

“Saving and Restoring State” on page 18-32

“Backtrace and Verbose Modes” on page 18-33

Overview
The MATLAB software gives you the ability to control what happens when a
warning is encountered during program execution. Options that are available
include

• Display selected warnings.

• Ignore selected warnings.

• Stop in the debugger when a warning is invoked.

• Display the stack trace after a warning is invoked.

Depending on how you set your warning controls, you can have these actions
affect all warnings in your code, specific warnings that you select, or just
the most recently invoked warning.

Setting up this system of warning control involves several steps.

1 Start by determining the scope of the control you need for the warnings
generated by your code. Do you want the control operations to affect all the
warnings in your code at once, or do you want to be able to control certain
warnings separately?

2 If the latter is true, you will need to identify those warnings you want to
selectively control. This requires going through your code and attaching
unique message identifiers to each of those warnings. If, on the other hand,

18-25

18 Error Handling

you do not require that fine a granularity of control, the warning statements
in your code need no message identifiers.

3 When you are ready to run your programs, use the MATLAB warning control
statements to exercise the desired controls on all or selected warnings.
Include message identifiers in these control statements when selecting
specific warnings to act upon.

Warning Statements
The warning statements you put into your code must contain the string to
be displayed when the warning is incurred, and may also contain a message
identifier. If you are not planning to use warning control or if you do not need
to single out certain warnings for control, you need to specify only the message
string. Use the syntax shown in “Warnings” on page 18-23. Valid formats are

warning('warnmsg')
warning('formatted_warnmsg', arg1, arg2, ...)

Attaching an Identifier to the Warning Statement
If you want to be able to apply control statements to specific warnings, you
need to include a message identifier in the warning statements you wish to
control. The message identifier must be the first argument in the statement.
Valid formats are

warning('msg_id', 'warnmsg')
warning('msg_id', 'formatted_warnmsg', arg1, arg2, ...)

See “Message Identifiers” on page 18-8 for information on how to specify the
msg_id argument.

Note When you specify more than one input argument with warning,
MATLAB treats the warnmsg string as if it were a formatted_warnmsg. This
is explained in “Formatted Message Strings” on page 18-23.

18-26

Warning Control

Warning Control Statements
Once you have the warning statements in your program file and are ready to
execute it, you tell MATLAB how to act on these warnings by issuing control
statements. These statements place the specified warning(s) into a desired
state and have the format

warning state msg_id

Control statements can return information on the state of selected warnings
if you assign the output to a variable, as shown below. See “Output from
Control Statements” on page 18-30.

s = warning('state', 'msg_id');

Warning States
There are three possible values for the state argument of a warning control
statement.

State Description

on Enable the display of selected warning message.

off Disable the display of selected warning message.

query Display the current state of selected warning.

Message Identifiers
In addition to the message identifiers already discussed, there are three other
identifiers that you can use in control statements only.

Identifier Description

msg_id string Set selected warning to the specified state.

all Set all warnings to the specified state.

last Set only the last displayed warning to the specified
state.

18-27

18 Error Handling

Note MATLAB starts up with all warnings enabled, except for those
displayed in response to the command, warning('query', 'all').

When warnings are disabled, the dbstop if warning commands have no
effect. If warnings are disabled for specific message identifiers, the dbstop if
warning identifier has no effect for those identifiers.

Retrieving a Message Identifier from a Warning. If you get a warning
and you would like to know what the message identifier is for that warning,
you can retrieve the identifier from the second output of the lastwarn
function. The following example generates a warning when it attempts to
concatenate two unlike integer types together:

warning on all;

A = [int8(150), int16(300)];
Warning: Concatenation with dominant (left-most) integer class

may overflow other operands on conversion to return class.

If you are already aware of the consequences of this command and do not
want to see this warning message displayed every time you run your program,
you can disable the warning message. To identify the warning to disable, use
the following commands to acquire the message identifier:

warnStruct = warning('query', 'last');
msgid_integerCat = warnStruct.identifier
msgid_integerCat =

MATLAB:concatenation:integerInteraction

Once you have the identifier, you can use it to disable this one particular
message:

warning('off', msgid_integerCat);

Try the command again

A = [int8(150), int16(300)]
A =

127 127

18-28

Warning Control

Turn the message back on again, if you need to, as shown here:

warning('on', msgid_intcatwarn);
MATLAB:nonScalarConditional

Enabling and Disabling Selected Warnings. Enable just the
actionNotTaken warning from Simulink by first turning off all warnings and
then setting just that warning to on.

warning off all
warning on Simulink:actionNotTaken

Next, use query to determine the current state of all warnings. It
reports that you have set all warnings to off, with the exception of
Simulink:actionNotTaken.

warning query all
The default warning state is 'off'. Warnings not set to the
default are

State Warning Identifier

on Simulink:actionNotTaken

Enabling and Disabling All Warnings. You can enable or disable all
warnings using the 'all' identifier. Using the query option shows the result:

warning on all

warning query all
The default warning state is 'on'. Warnings not set to the
default are

State Warning Identifier

off MATLAB:nonScalarConditional

Note that, in this case, there is one warning that does not take on the default
state when that state is changed from off to on. This is intentional. If so
desired, you can force this or any individual warning to either the on or off
state by specifying the message identifier in the command:

18-29

18 Error Handling

warning on MATLAB:nonScalarConditional

warning query all
All warnings have the state 'on'.

Disabling the Most Recent Warning. Evaluating inv on zero displays a
warning message. Turn off the most recently invoked warning with warning
off last.

inv(0)
Warning: Matrix is singular to working precision.
ans =

Inf

warning off last

inv(0) % No warning is displayed this time
ans =

Inf

Output from Control Statements
The warning function, when used in a control statement, returns a MATLAB
structure array containing the previous state of the selected warning(s). Use
the following syntax to return this information in structure array s:

s = warning('state', 'msg_id');

You must type the command using the MATLAB function format; parentheses
and quotation marks are required.

Note MATLAB does not display warning output if you do not assign the
output to a variable.

The next example turns off InconsistentDataType warnings for the
MATLAB:odearguments component, and returns the identifier and previous
state in a 1-by-1 structure array.

MATLAB:odearguments:InconsistentDataType

18-30

Warning Control

s = warning('off','MATLAB:odearguments:InconsistentDataType')
s =

identifier: 'MATLAB:odearguments:InconsistentDataType'
state: 'on'

You can use output variables with any type of warning control statement.
If you just want to collect the information but do not want to change state,
simply perform a query on the warning(s). MATLAB returns the current
state of those warnings selected by the message identifier.

s = warning('query', 'msg_id');

If you want to change state, but save the former state so you can restore it
later, use the return structure array to save that state. The following example
does an implicit query, returning state information in s, and then turns on
all warnings.

s = warning('on', 'all');

See “Saving and Restoring State” on page 18-32, for more information on
restoring the former state of warnings.

Output Structure Array
Each element of the structure array returned by warning contains two fields.

Field Name Description

identifier Message identifier string, 'all', or 'last'

state State of warning(s) prior to invoking this control
statement

If you query for the state of just one warning, using a message identifier or
'last' in the command, MATLAB returns a one-element structure array.
The identifier field contains the selected message identifier, and the state
field holds the current state of that warning:

s = warning('query','last')
s =

identifier: 'MATLAB:odearguments:InconsistentDataType'
state: 'on'

18-31

18 Error Handling

If you query for the state of all warnings, using 'all' in the command,
MATLAB returns a structure array having one or more elements:

• The first element of the array always represents the default state. (This is
the state set by the last warning on|off all command.)

• Each other element of the array represents a warning that is in a state
different from the default.

warning off all
warning on MATLAB:odearguments:InconsistentDataType
warning on MATLAB:rmpath:DirNotFound

s = warning('query', 'all')
s =

3x1 struct array with fields:
identifier
state

s(1)
ans =

identifier: 'all'
state: 'off'

s(2)
ans =

identifier: 'MATLAB:odearguments:InconsistentDataType'
state: 'on'

s(3)
ans =

identifier: 'MATLAB:rmpath:DirNotFound'
state: 'on'

Saving and Restoring State
To temporarily change the state of some warnings and then later return to
your original settings, save the original state in a structure array and then
restore it from that array. You can save and restore the state of all of your
warnings or just one that you select with a message identifier.

18-32

Warning Control

To save the current warning state, assign the output of a warning control
statement, as discussed in “Output from Control Statements” on page 18-30.
The following statement saves the current state of all warnings in structure
array s:

s = warning('query', 'all');

To restore state from s, use the syntax shown below. Note that the MATLAB
function format (enclosing arguments in parentheses) is required.

warning(s)

Example 1 — Performing an Explicit Query
Perform a query of all warnings to save the current state in structure array s:

s = warning('query', 'all');

Then, after doing some work that includes making changes to the state of
some warnings, restore the original state of all warnings:

warning(s)

Example 2 — Performing an Implicit Query
Turn on one particular warning, saving the previous state of this warning
in s. Remember that this nonquery syntax (where state equals on or off)
performs an implicit query prior to setting the new state:

s = warning('on', 'Control:parameterNotSymmetric');

Restore the state of that one warning when you are ready, with

warning(s)

Backtrace and Verbose Modes
In addition to warning messages, there are two modes that can be enabled or
disabled with a warning control statement. These modes are shown here.

18-33

18 Error Handling

Mode Description Default

verbose Display a message on how to
suppress the warning.

off (terse)

backtrace Display a stack trace after a
warning is invoked.

on (enabled)

The syntax for this type of control statement is as follows, where state, in
this case, can be only on, off, or query:

warning state mode

Note that there is no need to include a message identifier with this type of
control statement. All enabled warnings are affected by the this type of
control statement.

Note You cannot save and restore the current state of the backtrace or
verbose modes as you can with other states.

Example 1 — Enabling Verbose Warnings
When you enable verbose warnings, MATLAB displays an extra line of
information with each warning that tells you how to suppress it:

Turn on all warnings, disable backtrace (if you have just run the previous
example), and enable verbose warnings:

warning on all
warning off backtrace
warning on verbose

Create a function that tests a condition and displays a warning message
based on the input:

function testArrayMax(arr, max)
exceedMax = find(arr > max);
if any(exceedMax)

warning('TestEnv:InvalidInput', ...
'Values in array "%s" exceed the maximum.', ...

18-34

Warning Control

inputname(1))
end

Call the function to find out how to suppress warnings that might be
generated by that function. Note the last line displayed here:

A = [1287, 5010, 2759];

testArrayMax(A, 5000)

Warning: Values in array "A" exceed the maximum.

(Type "warning off TestEnv:InvalidInput" to suppress this warning.)

Use the message identifier TestEnv:InvalidInput to disable only this
warning, and run the function again. This time the warning message is not
displayed:

warning off TestEnv:InvalidInput
testArrayMax(A, 5000)

Example 2 — Displaying a Stack Trace on a Specific Warning
It can be difficult to locate the source of a warning when it is generated
from code buried in several levels of function calls. This example generates
a warning within a function that is nested several levels deep within the
primary function in file isValidArray.m:

function isValidArray(A)
max = 5000;
nestFun_1

function nestFun_1
nestFun_2
function nestFun_2

testArrayMax(A, max);
end

end
end

After enabling all warnings, run the program. Due to the value of A(2), the
function generates a warning:

18-35

18 Error Handling

warning on all
warning off verbose

A = [1287, 5010, 2759];

isValidArray(A)
Warning: Values in array "A" exceed the maximum.

In a function of this size, it is not difficult to find the cause of the warning,
but in a file of several hundred lines, this could take some time. To simplify
the debug process, enable backtrace mode. In this mode, MATLAB reports
which function generated the warning (testArrayMax), the line number of the
attempted operation (line 4), the sequence of function calls that led up to the
execution of the function (from isValidArray to nestFun_1 to nestFun_2 and
finally to testArrayMax), and the line at which each of these function calls
were made (3, 5, 7, and 4):

warning on backtrace

callArrayMax(A)
Warning: Values in array "A" exceed the maximum.
> In testArrayMax at 4

In isValidArray>nestFun_1/nestFun_2 at 7
In isValidArray>nestFun_1 at 5
In isValidArray at 3

18-36

Debugging Errors and Warnings

Debugging Errors and Warnings
You can direct the MATLAB software to temporarily stop the execution of an
program in the event of a run-time error or warning, at the same time opening
a debug window paused at the line that generated the error or warning.
This enables you to examine values internal to the program and determine
the cause of the error.

Use the dbstop function to have MATLAB stop execution and enter debug
mode when any function you subsequently run produces a run-time error or
warning. There are three types of such breakpoints that you can set.

Command Description

dbstop if all
error

Stop on any error.

dbstop if error Stop on any error not detected within a try-catch
block.

dbstop if warning Stop on any warning.

In all three cases, the file you are trying to debug must be in a folder that is
on the search path or in the current folder.

You cannot resume execution after an error; use dbquit to exit from the
Debugger. To resume execution after a warning, use dbcont or dbstep.

18-37

18 Error Handling

18-38

19

Program Scheduling

• “Using a MATLAB Timer Object” on page 19-2

• “Creating Timer Objects” on page 19-5

• “Working with Timer Object Properties” on page 19-7

• “Starting and Stopping Timers” on page 19-10

• “Creating and Executing Callback Functions” on page 19-14

• “Timer Object Execution Modes” on page 19-19

• “Deleting Timer Objects from Memory” on page 19-23

• “Finding Timer Objects in Memory” on page 19-24

19 Program Scheduling

Using a MATLAB Timer Object

In this section...

“Overview” on page 19-2

“Example: Displaying a Message” on page 19-3

Overview
The MATLAB software includes a timer object that you can use to schedule
the execution of MATLAB commands. This section describes how you can
create timer objects, start a timer running, and specify the processing that
you want performed when a timer fires. A timer is said to fire when the
amount of time specified by the timer object elapses and the timer object
executes the commands you specify.

To use a timer, perform these steps:

1 Create a timer object.

You use the timer function to create a timer object. See “Creating Timer
Objects” on page 19-5 for more information.

2 Specify which MATLAB commands you want executed when the timer fires
and control other aspects of timer object behavior.

You use timer object properties to specify this information. To learn about all
the properties supported by the timer object, see “Working with Timer Object
Properties” on page 19-7. (You can also set timer object properties when you
create them, in step 1.)

3 Start the timer object.

After you create the timer object, you must start it, using either the start
or startat function. See “Starting and Stopping Timers” on page 19-10 for
more information.

4 Delete the timer object when you are done with it.

19-2

Using a MATLAB® Timer Object

After you are finished using a timer object, you should delete it from
memory. See “Deleting Timer Objects from Memory” on page 19-23 for more
information.

Note The specified execution time and the actual execution of a timer can
vary because timer objects work in the MATLAB single-threaded execution
environment. The length of this time lag is dependent on what other
processing MATLAB is performing. To force the execution of the callback
functions in the event queue, include a call to the drawnow function in your
code. The drawnow function flushes the event queue.

Example: Displaying a Message
The following example sets up a timer object that executes a MATLAB
command string after 10 seconds elapse. The example creates a timer
object, specifying the values of two timer object properties, TimerFcn and
StartDelay. TimerFcn specifies the timer callback function. This is the
MATLAB command string or program file that you want to execute when
the timer fires. In the example, the timer callback function sets the value
of the MATLAB workspace variable stat and executes the MATLAB disp
command. The StartDelay property specifies how much time elapses before
the timer fires.

After creating the timer object, the example uses the start function to start
the timer object. (The additional commands in this example are included to
illustrate the timer but are not required for timer operation.)

t = timer('TimerFcn', 'stat=false; disp(''Timer!'')',...
'StartDelay',10);

start(t)

stat=true;
while(stat==true)

disp('.')
pause(1)

end

When you execute this code, it produces this output:

19-3

19 Program Scheduling

.

.

.

.

.

.

.

.

.
Timer!

delete(t) % Always delete timer objects after using them.

19-4

Creating Timer Objects

Creating Timer Objects

In this section...

“Creating the Object” on page 19-5

“Naming the Object” on page 19-6

Creating the Object
To use a timer in MATLAB, you must create a timer object. The timer
object represents the timer in MATLAB, supporting various properties and
functions that control its behavior.

To create a timer object, use the timer function. This creates a valid timer
object with default values for most properties. The following shows an
example of the default timer object and its summary display:

t = timer
Timer Object: timer-1

Timer Settings
ExecutionMode: singleShot

Period: 1
BusyMode: drop
Running: off

Callbacks
TimerFcn: ''
ErrorFcn: ''
StartFcn: ''
StopFcn: ''

MATLAB names the timer object timer-1. (See “Naming the Object” on page
19-6 for more information.)

To specify the value of timer object properties after you create it, you can use
the set function. This example sets the value of the TimerFcn property and
the StartDelay property. For more information about timer object properties,
see “Working with Timer Object Properties” on page 19-7.

19-5

19 Program Scheduling

set(t,'TimerFcn',@(x,y)disp('Hello World!'),'StartDelay',5)

You can also set timer object properties when you create the timer object by
specifying property name and value pairs as arguments to the timer function.
The following example sets the same properties at object creation time:

t = timer('TimerFcn', @(x,y)disp('Hello World!'),'StartDelay',5);

Always delete timer objects when you are done using them. See “Deleting
Timer Objects from Memory” on page 19-23 for more information.

Naming the Object
MATLAB assigns a name to each timer object you create. This name has the
form 'timer-i', where i is a number representing the total number of timer
objects created this session.

For example, the first time you call the timer function to create a timer object,
MATLAB names the object timer-1. If you call the timer function again to
create another timer object, MATLAB names the object timer-2.

MATLAB keeps incrementing the number associated with each timer object it
creates, even if you delete the timer objects you already created. For example,
if you delete the first two timer objects and create a new object, MATLAB
names it timer-3, even though the other two timer objects no longer exist in
memory. To reset the numeric part of timer object names to 1, execute the
clear classes command.

19-6

Working with Timer Object Properties

Working with Timer Object Properties

In this section...

“Retrieving the Value of Timer Object Properties” on page 19-7

“Setting the Value of Timer Object Properties” on page 19-8

To get information about timer object properties, see the timer function
reference page.

Retrieving the Value of Timer Object Properties
The timer object supports many properties that provide information about
the current state of the timer object and control aspects of its functioning. To
retrieve the value of a timer object property, you can use the get function or
use subscripts (dot notation) to access the field.

The following example uses the set function to retrieve the value of the
ExecutionMode property:

t = timer;

tmode = get(t,'ExecutionMode')

tmode =

singleShot

The following example uses dot notation to retrieve the value of the
ExecutionMode property:

tmode = t.ExecutionMode

tmode =

singleShot

To view a list of all the properties of a timer object, use the get function,
specifying the timer object as the only argument:

19-7

19 Program Scheduling

get(t)
AveragePeriod: NaN

BusyMode: 'drop'
ErrorFcn: ''

ExecutionMode: 'singleShot'
InstantPeriod: NaN

Name: 'timer-4'
ObjectVisibility: 'on'

Period: 1
Running: 'off'

StartDelay: 0
StartFcn: ''
StopFcn: ''

Tag: ''
TasksExecuted: 0

TasksToExecute: Inf
TimerFcn: ''

Type: 'timer'
UserData: []

Setting the Value of Timer Object Properties
To set the value of a timer object property, use the set function or subscripted
assignment (dot notation). You can also set timer object properties when you
create the timer object. For more information, see “Creating Timer Objects”
on page 19-5.

The following example uses both methods to assign values to timer object
properties. The example creates a timer that, once started, displays a message
every second until you stop it with the stop command.

1 Create a timer object.

t = timer;

2 Assign values to timer object properties using the set function.

set(t,'ExecutionMode','fixedRate','BusyMode','drop','Period',1);

3 Assign a value to the timer object TimerFcn property using dot notation.

t.TimerFcn = @(x,y)disp('Processing...');

19-8

Working with Timer Object Properties

4 Start the timer object. It displays a message at 1-second intervals.

start(t)

5 Stop the timer object.

stop(t)

6 Delete timer objects after you are done using them.

delete(t)

Viewing a List of All Settable Properties
To view a list of all timer object properties that can have values assigned to
them (in contrast to the read-only properties), use the set function, specifying
the timer object as the only argument.

The display includes the values you can use to set the property if, like the
BusyMode property, the property accepts an enumerated list of values.

t = timer;

set(t)

BusyMode: [{drop} | queue | error]

ErrorFcn: string -or- function handle -or- cell array

ExecutionMode: [{singleShot} | fixedSpacing | fixedDelay | fixedRate]

Name

ObjectVisibility: [{on} | off]

Period

StartDelay

StartFcn: string -or- function handle -or- cell array

StopFcn: string -or- function handle -or- cell array

Tag

TasksToExecute

TimerFcn: string -or- function handle -or- cell array

UserData

19-9

19 Program Scheduling

Starting and Stopping Timers

In this section...

“Starting a Timer” on page 19-10

“Starting a Timer at a Specified Time” on page 19-10

“Stopping Timer Objects” on page 19-11

“Blocking the MATLAB Command Line” on page 19-12

Note Because the timer works within the MATLAB single-threaded
environment, it cannot guarantee execution times or execution rates.

Starting a Timer
To start a timer object, call the start function, specifying the timer object
as the only argument. The start function starts a timer object running;
the amount of time the timer runs is specified in seconds in the StartDelay
property.

This example creates a timer object that displays a greeting after 5 seconds
elapse.

1 Create a timer object, specifying values for timer object properties.

t = timer('TimerFcn',@(x,y)disp('Hello World!'),'StartDelay', 5);

2 Start the timer object.

start(t)

3 Delete the timer object after you are finished using it.

delete(t);

Starting a Timer at a Specified Time
To start a timer object and specify a date and time for the timer to fire, (rather
than specifying the number of seconds to elapse), use the startat function.
This function starts a timer object and allows you to specify the date, hour,

19-10

Starting and Stopping Timers

minute, and second when you want to the timer to execute. You specify
the time as a MATLAB serial date number or as a specially formatted date
text string.

This example creates a timer object that displays a message after an hour has
elapsed. The startat function starts the timer object running and calculates
the value of the StartDelay property based on the time you specify.

t2=timer('TimerFcn',@(x,y)disp('It has been an hour now'));
startat(t2,now+1/24);

Stopping Timer Objects
Once started, the timer object stops running if one of the following conditions
apply:

• The timer function callback (TimerFcn) has been executed the number of
times specified in the TasksToExecute property.

• An error occurred while executing a timer function callback (TimerFcn).

You can also stop a timer object by using the stop function, specifying the
timer object as the only argument. The following example illustrates stopping
a timer object:

1 Create a timer object.

t = timer('TimerFcn',@(x,y)disp('Hello World!'), ...
'StartDelay', 100);

2 Start it running.

start(t)

3 Check the state of the timer object after starting it.

get(t,'Running')

ans =

on

19-11

19 Program Scheduling

4 Stop the timer using the stop command and check the state again. When
a timer stops, the value of the Running property of the timer object is set
to 'off'.

stop(t)

get(t,'Running')

ans =

off

5 Delete the timer object when you are finished using it.

delete(t)

Note The timer object can execute a callback function that you specify when
it starts or stops. See “Creating and Executing Callback Functions” on page
19-14.

Blocking the MATLAB Command Line
By default, when you use the start or startat function to start a timer
object, the function returns control to the command line immediately. For
some applications, you might prefer to block the command line until the
timer fires. To do this, call the wait function right after calling the start
or startat function.

1 Create a timer object.

t = timer('StartDelay', 5,'TimerFcn', ...
@(x,y)disp('Hello World!'));

2 Start the timer object running.

start(t)

19-12

Starting and Stopping Timers

3 After the start function returns, call the wait function immediately. The
wait function blocks the command line until the timer object fires.

wait(t)

4 Delete the timer object after you are finished using it.

delete(t)

19-13

19 Program Scheduling

Creating and Executing Callback Functions

In this section...

“Associating Commands with Timer Object Events” on page 19-14

“Creating Callback Functions” on page 19-15

“Specifying the Value of Callback Function Properties” on page 19-17

Note Callback function execution might be delayed if the callback involves
a CPU-intensive task such as updating a figure.

Associating Commands with Timer Object Events
The timer object supports properties that let you specify the MATLAB
commands that execute when a timer fires, and for other timer object
events, such as starting, stopping, or when an error occurs. These are called
callbacks. To associate MATLAB commands with a timer object event, set the
value of the associated timer object callback property.

The following diagram shows when the events occur during execution of a
timer object and give the names of the timer object properties associated
with each event. For example, to associate MATLAB commands with a start
event, assign a value to the StartFcn callback property. Error callbacks
can occur at any time.

19-14

Creating and Executing Callback Functions

Timer Object Events and Related Callback Function

Creating Callback Functions
When the time period specified by a timer object elapses, the timer object
executes one or more MATLAB functions of your choosing. You can specify
the functions directly as the value of the callback property. You can also
put the commands in a function file and specify the function as the value of
the callback property.

Specifying Callback Functions Directly
This example creates a timer object that displays a greeting after 5 seconds.
The example specifies the value of the TimerFcn callback property directly,
putting the commands in a text string.

t = timer('TimerFcn',@(x,y)disp('Hello World!'),'StartDelay',5);

19-15

19 Program Scheduling

Note When you specify the callback commands directly as the value of the
callback function property, the commands are evaluated in the MATLAB
workspace.

Putting Commands in a Callback Function
Instead of specifying MATLAB commands directly as the value of a callback
property, you can put the commands in a MATLAB program file and specify
the file as the value of the callback property.

When you create a callback function, the first two arguments must be a
handle to the timer object and an event structure. An event structure contains
two fields: Type and Data. The Type field contains a text string that identifies
the type of event that caused the callback. The value of this field can be any of
the following strings: 'StartFcn', 'StopFcn', 'TimerFcn', or 'ErrorFcn'.
The Data field contains the time the event occurred.

In addition to these two required input arguments, your callback function can
accept application-specific arguments. To receive these input arguments, you
must use a cell array when specifying the name of the function as the value
of a callback property. For more information, see “Specifying the Value of
Callback Function Properties” on page 19-17.

Example: Writing a Callback Function
This example implements a simple callback function that displays the type
of event that triggered the callback and the time the callback occurred. To
illustrate passing application-specific arguments, the example callback
function accepts as an additional argument a text string and includes this
text string in the display output. To see this function used with a callback
property, see “Specifying the Value of Callback Function Properties” on page
19-17.

function my_callback_fcn(obj, event, string_arg)

txt1 = ' event occurred at ';
txt2 = string_arg;

event_type = event.Type;

19-16

Creating and Executing Callback Functions

event_time = datestr(event.Data.time);

msg = [event_type txt1 event_time];
disp(msg)
disp(txt2)

Specifying the Value of Callback Function Properties
You associate a callback function with a specific event by setting the value of
the appropriate callback property. You can specify the callback function as
a cell array or function handle. If your callback function accepts additional
arguments, you must use a cell array.

The following table shows the syntax for several sample callback functions
and describes how you call them.

Callback Function Syntax
How to Specify as a Property
Value for Object t

function myfile t.StartFcn = @myfile

function myfile(obj, event) t.StartFcn = @myfile

function myfile(obj, event,
arg1, arg2)

t.StartFcn = {@myfile, 5, 6}

This example illustrates several ways you can specify the value of timer object
callback function properties, some with arguments and some without. To see
the code of the callback function, my_callback_fcn, see “Example: Writing a
Callback Function” on page 19-16:

1 Create a timer object.

t = timer('StartDelay', 4, 'Period', 4, 'TasksToExecute', 2, ...
'ExecutionMode', 'fixedRate');

2 Specify the value of the StartFcn callback. Note that the example specifies
the value in a cell array because the callback function needs to access
arguments passed to it:

t.StartFcn = {@my_callback_fcn, 'My start message'};

19-17

19 Program Scheduling

3 Specify the value of the StopFcn callback. Again, the value is specified in a
cell array because the callback function needs to access the arguments passed
to it:

t.StopFcn = { @my_callback_fcn, 'My stop message'};

4 Specify the value of the TimerFcn callback. The example specifies the
MATLAB commands in a text string:

t.TimerFcn = @(x,y)disp('Hello World!');

5 Start the timer object:

start(t)

The example outputs the following.

StartFcn event occurred at 10-Mar-2004 17:16:59
My start message
Hello World!
Hello World!
StopFcn event occurred at 10-Mar-2004 17:16:59
My stop message

6 Delete the timer object after you are finished with it.

delete(t)

19-18

Timer Object Execution Modes

Timer Object Execution Modes

In this section...

“Executing a Timer Callback Function Once” on page 19-19

“Executing a Timer Callback Function Multiple Times” on page 19-20

“Handling Callback Function Queuing Conflicts” on page 19-21

Executing a Timer Callback Function Once
The timer object supports several execution modes that determine how it
schedules the timer callback function (TimerFcn) for execution. You specify
the execution mode by setting the value of the ExecutionMode property.

To execute a timer callback function once, set the ExecutionMode property to
'singleShot'. This is the default execution mode. In this mode, the timer
object starts the timer and, after the time period specified in the StartDelay
property elapses, adds the timer callback function (TimerFcn) to the MATLAB
execution queue. When the timer callback function finishes, the timer stops.

The following figure graphically illustrates the parts of timer callback
execution for a singleShot execution mode. The shaded area in the figure,
labelled queue lag, represents the indeterminate amount of time between
when the timer adds a timer callback function to the MATLAB execution
queue and when the function starts executing. The duration of this lag is
dependent on what other processing MATLAB happens to be doing at the time.

Timer Callback Execution (singleShot Execution Mode)

19-19

19 Program Scheduling

Executing a Timer Callback Function Multiple Times
The timer object supports three multiple-execution modes:

• 'fixedRate'

• 'fixedDelay'

• 'fixedSpacing'

In many ways, these execution modes operate the same:

• The TasksToExecute property specifies the number of times you want the
timer to execute the timer callback function (TimerFcn).

• The Period property specifies the amount of time between executions of
the timer callback function.

• The BusyMode property specifies how the timer object handles queuing of
the timer callback function when the previous execution of the callback
function has not completed. See “Handling Callback Function Queuing
Conflicts” on page 19-21 for more information.

The execution modes differ only in where they start measuring the time
period between executions. The following table describes these differences.

Execution
Mode Description

'fixedRate' Time period between executions begins immediately after
the timer callback function is added to the MATLAB
execution queue.

'fixedDelay' Time period between executions begins when the timer
function callback actually starts executing, after any time
lag due to delays in the MATLAB execution queue.

'fixedSpacing' Time period between executions begins when the timer
callback function finishes executing.

The following figure illustrates the difference between these modes. Note that
the amount of time between executions (specified by the Period property)
remains the same. Only the point at which execution begins is different.

19-20

Timer Object Execution Modes

Differences Between Execution Modes

Handling Callback Function Queuing Conflicts
At busy times, in multiple-execution scenarios, the timer may need to add the
timer callback function (TimerFcn) to the MATLAB execution queue before
the previously queued execution of the callback function has completed.
You can determine how the timer object handles this scenario by using the
BusyMode property.

If you specify 'drop' as the value of the BusyMode property, the timer object
skips the execution of the timer function callback if the previously scheduled
callback function has not already completed.

If you specify 'queue', the timer object waits until the currently executing
callback function finishes before queuing the next execution of the timer
callback function.

19-21

19 Program Scheduling

Note In 'queue' mode, the timer object tries to make the average time
between executions equal the amount of time specified in the Period property.
If the timer object has to wait longer than the time specified in the Period
property between executions of the timer function callback, it shortens the
time period for subsequent executions to make up the time.

If the BusyMode property is set to 'error', the timer object stops and executes
the timer object error callback function (ErrorFcn), if one is specified.

19-22

Deleting Timer Objects from Memory

Deleting Timer Objects from Memory

In this section...

“Deleting One or More Timer Objects” on page 19-23

“Testing the Validity of a Timer Object” on page 19-23

Deleting One or More Timer Objects
When you are finished with a timer object, delete it from memory using the
delete function:

delete(t)

When you delete a timer object, workspace variables that referenced the object
remain. Deleted timer objects are invalid and cannot be reused. Use the clear
command to remove workspace variables that reference deleted timer objects.

To remove all timer objects from memory, enter

delete(timerfind)

For information about the timerfind function, see “Finding Timer Objects
in Memory” on page 19-24.

Testing the Validity of a Timer Object
To test if a timer object has been deleted, use the isvalid function. The
isvalid function returns logical 0 (false) for deleted timer objects:

isvalid(t)
ans =

0

19-23

19 Program Scheduling

Finding Timer Objects in Memory

In this section...

“Finding All Timer Objects” on page 19-24

“Finding Invisible Timer Objects” on page 19-24

Finding All Timer Objects
To find all the timer objects that exist in memory, use the timerfind function.
This function returns an array of timer objects. If you leave off the semicolon,
and there are multiple timer objects in the array, timerfind displays
summary information in a table:

t1 = timer;
t2 = timer;
t3 = timer;
t_array = timerfind

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 '' timer-3
2 singleShot 1 '' timer-4
3 singleShot 1 '' timer-5

Using timerfind to determine all the timer objects that exist in memory can
be helpful when deleting timer objects.

Finding Invisible Timer Objects
If you set the value of a timer object’s ObjectVisibility property to
'off', the timer object does not appear in listings of existing timer objects
returned by timerfind. The ObjectVisibility property provides a way for
application developers to prevent end-user access to the timer objects created
by their application.

Objects that are not visible are still valid. If you have access to the object (for
example, from within the file that created it), you can set its properties. To

19-24

Finding Timer Objects in Memory

retrieve a list of all the timer objects in memory, including invisible ones, use
the timerfindall function.

19-25

19 Program Scheduling

19-26

20

Performance

• “Analyzing Your Program’s Performance” on page 20-2

• “Techniques for Improving Performance” on page 20-4

20 Performance

Analyzing Your Program’s Performance

In this section...

“Overview” on page 20-2

“The Profiler Utility” on page 20-2

“Stopwatch Timer Functions” on page 20-2

Overview
The MATLAB Profiler graphical user interface and the stopwatch timer
functions enable you to get back information on how your program is
performing and help you identify areas that need improvement. The Profiler
can be more useful in measuring relative execution time and in identifying
specific performance bottlenecks in your code, while the stopwatch functions
tend to be more useful for providing absolute time measurements.

The Profiler Utility
A good first step to speeding up your programs is to find out where the
bottlenecks are. This is where you need to concentrate your attention to
optimize your code.

The MATLAB software provides the MATLAB Profiler, a graphical user
interface that shows you where your program is spending its time during
execution. Use the Profiler to help you determine where you can modify your
code to make performance improvements.

To start the Profiler, type profile viewer or select Desktop > Profiler in
the MATLAB Command Window. See Profiling for Improving Performance in
the MATLAB Desktop Tools and Development Environment documentation,
and the profile function reference page.

Stopwatch Timer Functions
If you just need to get an idea of how long your program (or a portion of
it) takes to run, or to compare the speed of different implementations of a
program, you can use the stopwatch timer functions, tic and toc. Invoking

20-2

Analyzing Your Program’s Performance

tic starts the timer, and the first subsequent toc stops it and reports the
time elapsed between the two.

Use tic and toc as shown here:

tic
-- run the program section to be timed --

toc

Keep in mind that tic and toc measure overall elapsed time. Make sure that
no other applications are running in the background on your system that
could affect the timing of your MATLAB programs.

Measuring Smaller Programs
Shorter programs sometimes run too fast to get useful data from tic and toc.
When this is the case, try measuring the program running repeatedly in a
loop, and then average to find the time for a single run:

tic
for k = 1:100

-- run the program --
end

toc

Using tic and toc Versus the cputime Function
Although it is possible to measure performance using the cputime function,
it is recommended that you use the tic and toc functions for this purpose
exclusively. It has been the general rule for CPU-intensive calculations
run on Microsoft Windows machines that the elapsed time using cputime
and the elapsed time using tic and toc are close in value, ignoring any
first time costs. There are cases however that show a significant difference
between these two methods. For example, in the case of a Pentium 4 with
hyperthreading running Windows, there can be a significant difference
between the values returned by cputime versus tic and toc.

20-3

20 Performance

Techniques for Improving Performance

In this section...

“Preallocating Arrays” on page 20-4

“Limiting Size and Complexity” on page 20-5

“Assigning to Variables” on page 20-6

“Using Appropriate Logical Operators” on page 20-7

“Overloading Built-In Functions” on page 20-7

“Functions Are Generally Faster Than Scripts” on page 20-8

“Load and Save Are Faster Than File I/O Functions” on page 20-8

“Vectorizing Loops” on page 20-8

“Avoid Large Background Processes” on page 20-11

Preallocating Arrays
for and while loops that incrementally increase, or grow, the size of a data
structure each time through the loop can adversely affect performance and
memory use. Repeatedly resizing arrays often requires that MATLAB spend
extra time looking for larger contiguous blocks of memory and then moving
the array into those blocks. You can often improve on code execution time by
preallocating the maximum amount of space that would be required for the
array ahead of time.

The following code creates a scalar variable x, and then gradually increases
the size of x in a for loop instead of preallocating the required amount of
memory at the start:

x = 0;
for k = 2:1000

x(k) = x(k-1) + 5;
end

Change the first line to preallocate a 1-by-1000 block of memory for x
initialized to zero. This time there is no need to repeatedly reallocate memory
and move data as more values are assigned to x in the loop:

20-4

Techniques for Improving Performance

x = zeros(1, 1000);
for k = 2:1000

x(k) = x(k-1) + 5;
end

Preallocation Functions
Preallocation makes it unnecessary for MATLAB to resize an array each time
you enlarge it. Use the appropriate preallocation function for the kind of
array you are working with.

Array Type Function Examples

Numeric zeros y = zeros(1, 100);

Cell cell B = cell(2, 3);
B{1,3} = 1:3;
B{2,2} = 'string';

Preallocating a Nondouble Matrix
When you preallocate a block of memory to hold a matrix of some type other
than double, avoid using the method

A = int8(zeros(100));

This statement preallocates a 100-by-100 matrix of int8 first by creating a
full matrix of doubles, and then converting each element to int8. This costs
time and uses memory unnecessarily.

The next statement shows how to do this more efficiently:

A = zeros(100, 'int8');

Limiting Size and Complexity
Running programs that are unusually large or complex can put a strain on
your system’s resources. For example, a program that nearly exceeds memory
capacity may work some of the time and sometimes not, depending on the
commands it uses and on what other applications are running at the time. An
example of unnecessary complexity might be having a large number of if and
else statements where switch and case might be more suitable. This can

20-5

20 Performance

also lead to performance and space problems. If you see the following error
message displayed, this is likely to be the source of the problem:

The input was too complicated or too big for MATLAB to parse

If you have a program file that includes thousands of variables or functions,
tens of thousands of statements, or hundreds of language keyword pairs (e.g.,
if-else, or try-catch), then making some of the changes suggested here is
likely to not only boost its performance and reliability, but should make your
program code easier to understand and maintain as well.

• Split large script files into smaller ones, having the first file call the second
if necessary.

• Take your larger chunks of program code and make separate functions (or
subfunctions and nested functions) of them.

• If you have functions or expressions by that seem overly complicated, make
smaller and simpler functions or expressions of them. Simpler functions
are also more likely to be made into utility functions that you can share
with others.

Assigning to Variables
For best performance, keep the following suggestions in mind when assigning
values to variables.

Changing a Variable’s Data Type or Dimension
Changing the class or array shape of an existing variable slows MATLAB
down as it must take extra time to process this. When you need to store data
of a different type, it is advisable to create a new variable.

This code changes the type for X from double to char, which has a negative
impact on performance:

X = 23;
.

-- other code --
.

X = 'A'; % X changed from type double to char
.

20-6

Techniques for Improving Performance

-- other code --

Assigning Real and Complex Numbers
Assigning a complex number to a variable that already holds a real number
impacts the performance of your program. Similarly, you should not assign a
real value to a variable that already holds a complex value.

Using Appropriate Logical Operators
When performing a logical AND or OR operation, you have a choice of two
operators of each type.

Operator Description

&, | Perform logical AND and OR on arrays element by
element

&&, || Perform logical AND and OR on scalar values with
short-circuiting

In if and while statements, it is more efficient to use the short-circuiting
operators, && for logical AND and || for logical OR. This is because these
operators often do not have to evaluate the entire logical expression. For
example, MATLAB evaluates only the first part of this expression whenever
the number of input arguments is less than three:

if (nargin >= 3) && (ischar(varargin{3}))

See Short-Circuit Operators in the MATLAB documentation for a discussion
on short-circuiting with && and ||.

Overloading Built-In Functions
Overloading MATLAB built-in functions on any of the standard MATLAB
data classes can negatively affect performance. For example, if you overload
the plus function to handle any of the integer classes differently, you may
hinder certain optimizations in the MATLAB built-in function code for plus,
and thus may slow down any programs that make use of this overload.

20-7

20 Performance

Functions Are Generally Faster Than Scripts
Your code executes more quickly if it is implemented in a function rather
than a script.

Load and Save Are Faster Than File I/O Functions
If you have a choice of whether to use load and save instead of the low-level
MATLAB file I/O routines such as fread and fwrite, choose the former.
load and save have been optimized to run faster and reduce memory
fragmentation.

Vectorizing Loops
The MATLAB software uses a matrix language, which means it is designed
for vector and matrix operations. You can often speed up your code by using
vectorizing algorithms that take advantage of this design. Vectorization
means converting for and while loops to equivalent vector or matrix
operations.

Simple Example of Vectorizing
Here is one way to compute the sine of 1001 values ranging from 0 to 10:

i = 0;
for t = 0:.01:10

i = i + 1;
y(i) = sin(t);

end

A vectorized version of the same code is

t = 0:.01:10;
y = sin(t);

The second example executes much faster than the first and is the way
MATLAB is meant to be used. Test this on your system by creating scripts
that contain the code shown, and then using the tic and toc functions to
measure the performance.

20-8

Techniques for Improving Performance

Advanced Example of Vectorizing
repmat is an example of a function that takes advantage of vectorization. It
accepts three input arguments: an array A, a row dimension M, and a column
dimension N.

repmat creates an output array that contains the elements of array A,
replicated and “tiled” in an M-by-N arrangement:

A = [1 2 3; 4 5 6];

B = repmat(A,2,3);
B =

1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6
1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6

repmat uses vectorization to create the indices that place elements in the
output array:

function B = repmat(A, M, N)

% Step 1 Get row and column sizes
[m,n] = size(A);

% Step 2 Generate vectors of indices from 1 to row/column size
mind = (1:m)';
nind = (1:n)';

% Step 3 Create index matrices from vectors above
mind = mind(:,ones(1, M));
nind = nind(:,ones(1, N));

% Step 4 Create output array
B = A(mind,nind);

Step 1, above, obtains the row and column sizes of the input array.

20-9

20 Performance

Step 2 creates two column vectors. mind contains the integers from 1 through
the row size of A. The nind variable contains the integers from 1 through
the column size of A.

Step 3 uses a MATLAB vectorization trick to replicate a single column of
data through any number of columns. The code is

B = A(:,ones(1,nCols))

where nCols is the desired number of columns in the resulting matrix.

Step 4 uses array indexing to create the output array. Each element of the
row index array, mind, is paired with each element of the column index array,
nind, using the following procedure:

1 The first element of mind, the row index, is paired with each element of
nind. MATLAB moves through the nind matrix in a columnwise fashion,
so mind(1,1) goes with nind(1,1), and then nind(2,1), and so on. The
result fills the first row of the output array.

2 Moving columnwise through mind, each element is paired with the elements
of nind as above. Each complete pass through the nind matrix fills one row
of the output array.

Caution While repmat can take advantage of vectorization, it can do so
at the expense of memory usage. When this is the case, you might find the
bsxfun function be more appropriate in this respect.

Functions Used in Vectorizing
Some of the most commonly used functions for vectorizing are as follows

Function Description

all Test to determine if all elements are nonzero

any Test for any nonzeros

cumsum Find cumulative sum

20-10

Techniques for Improving Performance

Function Description

diff Find differences and approximate derivatives

find Find indices and values of nonzero elements

ind2sub Convert from linear index to subscripts

ipermute Inverse permute dimensions of a multidimensional array

logical Convert numeric values to logical

meshgrid Generate X and Y arrays for 3-D plots

ndgrid Generate arrays for multidimensional functions and
interpolation

permute Rearrange dimensions of a multidimensional array

prod Find product of array elements

repmat Replicate and tile an array

reshape Change the shape of an array

shiftdim Shift array dimensions

sort Sort array elements in ascending or descending order

squeeze Remove singleton dimensions from an array

sub2ind Convert from subscripts to linear index

sum Find the sum of array elements

Avoid Large Background Processes
Avoid running large processes in the background at the same time you are
executing your program in MATLAB. This frees more CPU time for your
MATLAB session.

20-11

20 Performance

20-12

21

Memory Usage

• “Memory Allocation” on page 21-2

• “Memory Management Functions” on page 21-12

• “Strategies for Efficient Use of Memory” on page 21-15

• “Resolving “Out of Memory” Errors” on page 21-23

21 Memory Usage

Memory Allocation

In this section...

“Memory Allocation for Arrays” on page 21-2

“Data Structures and Memory” on page 21-6

Memory Allocation for Arrays
The topics below provide information on how the MATLAB software allocates
memory when working with arrays and variables. The purpose is to help
you use memory more efficiently when writing code. Most of the time,
however, you should not need to be concerned with these internal operations
as MATLAB handles data storage for you automatically.

• “Creating and Modifying Arrays” on page 21-2

• “Copying Arrays” on page 21-3

• “Array Headers” on page 21-4

• “Function Arguments” on page 21-6

Note Any information on how the MATLAB software handles data internally
is subject to change in future releases.

Creating and Modifying Arrays
When you assign a numeric or character array to a variable, MATLAB
allocates a contiguous virtual block of memory and stores the array data in
that block. MATLAB also stores information about the array data, such as its
class and dimensions, in a separate, small block of memory called a header.

If you add new elements to an existing array, MATLAB expands the existing
array in memory in a way that keeps its storage contiguous. This usually
requires finding a new block of memory large enough to hold the expanded
array. MATLAB then copies the contents of the array from its original
location to this new block in memory, adds the new elements to the array in
this block, and frees up the original array location in memory.

21-2

Memory Allocation

If you remove elements from an existing array, MATLAB keeps the memory
storage contiguous by removing the deleted elements, and then compacting its
storage in the original memory location.

Working with Large Data Sets. If you are working with large data sets,
you need to be careful when increasing the size of an array to avoid getting
errors caused by insufficient memory. If you expand the array beyond the
available contiguous memory of its original location, MATLAB must make a
copy of the array and set this copy to the new value. During this operation,
there are two copies of the original array in memory. This temporarily doubles
the amount of memory required for the array and increases the risk of your
program running out of memory during execution. It is better to preallocate
sufficient memory for the largest potential size of the array at the start. See
“Preallocating Arrays” on page 20-4.

Copying Arrays
Internally, multiple variables can point to the same block of data, thus
sharing that array’s value. When you copy a variable to another variable (e.g.,
B = A), MATLAB makes a copy of the array reference, but not the array itself.
As long as you do not modify the contents of the array, there is no need to
store more than one copy of it. If you do modify any elements of the array,
MATLAB makes a copy of the array and then modifies that copy.

The following example demonstrates this. Start by creating a simple script
memUsed.m to display how much memory is currently being used by your
MATLAB process. Put these two lines of code in the script:

[usr, sys] = memory;
usr.MemUsedMATLAB

Get an initial reading of how much memory is currently being used by your
MATLAB process:

format short eng;
memUsed
ans =

295.4977e+006

Create a 2000-by-2000 numeric array A. This uses about 32MB of memory:

21-3

21 Memory Usage

A = magic(2000);
memUsed
ans =

327.6349e+006

Make a copy of array A in B. As there is no need at this point to have two
copies of the array data, MATLAB only makes a copy of the array reference.
This requires no significant additional memory:

B = A;
memUsed
ans =

327.6349e+006

Now modify B by making it one half its original size (i.e., set 1000 rows to
empty). This requires that MATLAB make a copy of at least the first 1000
rows of the A array, and assign that copy to B:

B(1001:2000,:) = [];
format short; size(B)
ans =

1000 2000

Check the memory used again. Even though B is significantly smaller than
it was originally, the amount of memory used by the MATLAB process has
increased by about 16 MB (1/2 of the 32 MB originally required for A) because
B could no longer remain as just a reference to A:

format short eng; memUsed
ans =

343.6421e+006

Array Headers
When you assign an array to a variable, MATLAB also stores information
about the array (such as class and dimensions) in a separate piece of memory
called a header. For most arrays, the memory required to store the header is
insignificant. There is a small advantage to storing large data sets in a small

21-4

Memory Allocation

number of large arrays as opposed to a large number of small arrays. This is
because the former configuration requires fewer array headers.

Structure and Cell Arrays. For structures and cell arrays, MATLAB creates
a header not only for each array, but also for each field of the structure and
for each cell of a cell array. Because of this, the amount of memory required to
store a structure or cell array depends not only on how much data it holds,
but also on how it is constructed.

For example, take a scalar structure array S1 having fields R, G, and B. Each
field of size 100-by-50 requires one array header to describe the overall
structure, one header for each unique field name, and one header per field
for the 1-by-1 structure array. This makes a total of seven array headers
for the entire data structure:

S1.R(1:100,1:50)
S1.G(1:100,1:50)
S1.B(1:100,1:50)

On the other hand, take a 100-by-50 structure array S2 in which each element
has scalar fields R, G, and B. In this case, you need one array header to
describe the overall structure, one for each unique field name, and one per
field for each of the 5,000 elements of the structure, making a total of 15,004
array headers for the entire data structure:

S2(1:100,1:50).R
S2(1:100,1:50).G
S2(1:100,1:50).B

Even though S1 and S2 contain the same amount of data, S1 uses significantly
less space in memory. Not only is less memory required, but there is a
corresponding speed benefit to using the S1 format, as well.

See “Cell Arrays” and “Structures” under “Data Structures and Memory”
on page 21-6.

Memory Usage Reported By the whos Function. The whos function
displays the amount of memory consumed by any variable. For reasons of
simplicity, whos reports only the memory used to store the actual data. It does
not report storage for the array header, for example.

21-5

21 Memory Usage

Function Arguments
MATLAB handles arguments passed in function calls in a similar way. When
you pass a variable to a function, you are actually passing a reference to the
data that the variable represents. As long as the input data is not modified
by the function being called, the variable in the calling function and the
variable in the called function point to the same location in memory. If the
called function modifies the value of the input data, then MATLAB makes
a copy of the original array in a new location in memory, updates that copy
with the modified value, and points the input variable in the called function
to this new array.

In the example below, function myfun modifies the value of the array passed
into it. MATLAB makes a copy in memory of the array pointed to by A, sets
variable X as a reference to this new array, and then sets one row of X to zero.
The array referenced by A remains unchanged:

A = magic(500);
myfun(A);

function myfun(X)
X(400,:) = 0;

If the calling function needs the modified value of the array it passed to myfun,
you need to return the updated array as an output of the called function,
as shown here for variable A:

A = magic(500);
A = myfun(A);
sprintf('The new value of A is %d', A)

function Y = myfun(X)
X(400,:) = 0;
Y = X;

Data Structures and Memory
Memory requirements differ for the various types of MATLAB data structures.
You may be able to reduce the amount of memory used for these structures by
considering how MATLAB stores them.

21-6

Memory Allocation

Numeric Arrays
MATLAB requires 1, 2, 4, or 8 bytes to store 8-bit, 16-bit, 32-bit, and 64-bit
signed and unsigned integers, respectively. For floating-point numbers,
MATLAB uses 4 or 8 bytes for single and double types. To conserve memory
when working with numeric arrays, MathWorks recommends that you use
the smallest integer or floating-point type that will contain your data without
overflowing. For more information, see "Numeric Types" in the MATLAB
Programming Fundamentals documentation.

Complex Arrays
MATLAB stores complex data as separate real and imaginary parts. If you
make a copy of a complex array variable, and then modify only the real or
imaginary part of the array, MATLAB creates a new array containing both
real and imaginary parts.

Sparse Matrices
It is best to store matrices with values that are mostly zero in sparse format.
Sparse matrices can use less memory and may also be faster to manipulate
than full matrices. You can convert a full matrix to sparse format using the
sparse function.

Compare two 1000-by-1000 matrices: X, a matrix of doubles with 2/3 of its
elements equal to zero; and Y, a sparse copy of X. The following example shows
that the sparse matrix requires approximately half as much memory:

whos
Name Size Bytes Class

X 1000x1000 8000000 double array
Y 1000x1000 4004000 double array (sparse)

Cell Arrays
In addition to data storage, cell arrays require a certain amount of additional
memory to store information describing each cell. This information is
recorded in a header, and there is one header for each cell of the array. You
can determine the amount of memory required for a cell array header by

21-7

21 Memory Usage

finding the number of bytes consumed by a 1-by-1 cell that contains no data,
as shown below for a 32-bit system:

A = {[]}; % Empty cell array

whos A
Name Size Bytes Class Attributes

A 1x1 60 cell

In this case, MATLAB shows the number of bytes required for each header in
the cell array on a 32-bit system to be 60. This is the header size that is used
in all of the 32-bit examples in this section. For 64-bit systems, the header
size is assumed to be 112 bytes in this documentation. You can find the
correct header size on a 64-bit system using the method just shown for 32 bits.

To predict the size of an entire cell array, multiply the number you have just
derived for the header by the total number of cells in the array, and then
add to that the number of bytes required for the data you intend to store
in the array:

(header_size x number_of_cells) + data

So a 10-by-20 cell array that contains 400 bytes of data would require 22,800
bytes of memory on a 64-bit system:

(112 x 200) + 400 = 22800

Note While numeric arrays must be stored in contiguous memory, structures
and cell arrays do not.

Example 1 – Memory Allocation for a Cell Array. The following 4-by-1
cell array records the brand name, screen size, price, and on-sale status for
three laptop computers:

Laptops = {['SuperrrFast 89X', 'ReliablePlus G5', ...
'UCanA4dIt 140L6']; ...

[single(17), single(15.4), single(14.1)]; ...
[2499.99, 1199.99, 499.99]; ...

21-8

Memory Allocation

[true, true, false]};

On a 32-bit system, the cell array header alone requires 60 bytes per cell:

4 cells * 60 bytes per cell = 240 bytes for the cell array

Calculate the memory required to contain the data in each of the four cells:

45 characters * 2 bytes per char = 90 bytes
3 doubles * 8 bytes per double = 24 bytes
3 singles * 4 bytes per single = 12 bytes
3 logicals * 1 byte per logical = 3 bytes

90 + 24 + 12 + 3 = 129 bytes for the data

Add the two, and then compare your result with the size returned by
MATLAB:

240 + 129 = 369 bytes total

whos Laptops
Name Size Bytes Class Attributes

Laptops 4x1 369 cell

Structures

S.A = [];
B = whos('S');
B.bytes - 60
ans =

64

Compute the memory needed for a structure array as follows:

32-bit systems: fields x ((60 x array elements) + 64) + data
64-bit systems: fields x ((112 x array elements) + 64) + data

On a 64-bit computer system, a 4-by-5 structure Clients with fields Address
and Phone uses 4,608 bytes just for the structure:

21-9

21 Memory Usage

2 fields x ((112 x 20) + 64) = 2 x (2240 + 64) = 4608 bytes

To that sum, you must add the memory required to hold the data assigned to
each field. If you assign a 25-character string to Address and a 12-character
string to Phone in each element of the 4-by-5 Clients array, you use 1480
bytes for data:

(25+12) characters * 2 bytes per char * 20 elements = 1480 bytes

Add the two and you see that the entire structure consumes 6,088 bytes of
memory.

Example 1 – Memory Allocation for a Structure Array. Compute the
amount of memory that would be required to store the following 6-by-5
structure array having the following four fields on a 32-bit system:

A: 5-by-8-by-6 signed 8-bit integer array
B: 1-by-200 single array
C: 30-by-30 unsigned 16-bit integer array
D: 1-by-27 character array

Construct the array:

A = int8(ones(5,8,6));
B = single(1:500);
C = uint16(magic(30));
D = 'Company Name: MathWorks';

s = struct('f1', A, 'f2', B, 'f3', C, 'f4', D);

for m=1:6
for n=1:5

s(m,n)=s(1,1);
end

end

Calculate the amount of memory required for the structure itself, and then for
the data it contains:

structure = fields x ((60 x array elements) + 64) =
4 x ((60 x 30) + 64) = 7,456 bytes

21-10

Memory Allocation

data = (field1 + field2 + field3 + field4) x array elements =
(240 + 2000 + 1800 + 54) x 30 = 122,820 bytes

Add the two, and then compare your result with the size returned by
MATLAB:

Total bytes calculated for structure s: 7,456 + 122,820 = 130,276

whos s
Name Size Bytes Class Attributes

s 6x5 130036 struct

21-11

21 Memory Usage

Memory Management Functions
The following functions can help you to manage memory use while running
the MATLAB software:

• memory displays or returns information about how much memory is
available and how much is used by MATLAB. This includes the following:

- Size of the largest single array MATLAB can create at this time.

- Total size of the virtual address space available for data.

- Total amount of memory used by the MATLAB process for both libraries
and data.

- Available and total Virtual Memory for the MATLAB software process.

- Available system memory, including both physical memory and paging
file.

- Available and the total physical memory (RAM) of the computer.

• whos shows how much memory MATLAB currently has allocated for
variables in the workspace.

• pack saves existing variables to disk, and then reloads them contiguously.
This reduces the chances of running into problems due to memory
fragmentation.

• clear removes variables from memory. One way to increase the amount
of available memory is to periodically clear variables from memory that
you no longer need.

If you use pack and there is still not enough free memory to proceed, you
probably need to remove some of the variables you are no longer using
from memory. Use clear to do this.

• save selectively stores variables to the disk. This is a useful technique
when you are working with large amounts of data. Save data to the disk
periodically, and then use the clear function to remove the saved data
from memory.

• load reloads a data file saved with the save function.

• quit exits MATLAB and returns all allocated memory to the system. This
can be useful on The Open Group UNIX systems, which do not free up

21-12

Memory Management Functions

memory allocated to an application (e.g., MATLAB) until the application
exits.

You can use the save and load functions in conjunction with the quit
command to free memory by:

1 Saving any needed variables with the save function.

2 Quitting MATLAB to free all memory allocated to MATLAB.

3 Starting a new MATLAB session and loading the saved variables back
into the clean MATLAB workspace.

The whos Function
The whos command can give you an idea of the memory used by MATLAB
variables.

A = ones(10,10);
whos

Name Size Bytes Class Attributes
A 10x10 800 double

Note that whos does not include information about

• Memory used by MATLAB (e.g., Sun Java code and plots).

• Memory used for most objects (e.g., time series, custom) .

• Memory for variables not in the calling workspace .

• Shared data copies. whos shows bytes used for a shared data copy even
when it does not use any memory. This example shows that whos reports
an array (A) and a shared data copy of that array (B) separately, even
though the data exists only once in memory:

Store 400 MB array as A. Memory used = 381MB (715 MB – 334 MB) :

memory
Memory used by MATLAB: 334 MB (3.502e+008 bytes)

A = rand(5e7,1);

21-13

21 Memory Usage

memory
Memory used by MATLAB: 715 MB (7.502e+008 bytes)

whos
Name Size Bytes Class Attributes

A 50000000x1 400000000 double

Create B and point it to A. Note that although whos shows both A and B,
there is only one copy of the data in memory. No additional memory is
consumed by assigning A to B:

B = A;

memory
Memory used by MATLAB: 715 MB (7.502e+008 bytes)

whos
Name Size Bytes Class Attributes

A 50000000x1 400000000 double
B 50000000x1 400000000 double

Modifying B(1)copies all of A to B and changes the value of B(1). Memory
used = 382MB (1097 MB – 715 MB). Now there are two copies of the data
in memory, yet the output of whos does not change:

B(1) = 3;

memory
Memory used by MATLAB: 1097 MB (1.150e+009 bytes)

whos
Name Size Bytes Class Attributes

A 50000000x1 400000000 double
B 50000000x1 400000000 double

21-14

Strategies for Efficient Use of Memory

Strategies for Efficient Use of Memory

In this section...

“Ways to Reduce the Amount of Memory Required” on page 21-15

“Using Appropriate Data Storage” on page 21-17

“How to Avoid Fragmenting Memory” on page 21-20

“Reclaiming Used Memory” on page 21-21

Ways to Reduce the Amount of Memory Required
The source of many "out of memory" problems often involves analyzing or
processing an existing large set of data such as in a file or a database. This
requires bringing all or part of the data set into the MATLAB software
process. The following techniques deal with minimizing the required memory
during this stage.

Load Only As Much Data As You Need
Only import into MATLAB as much of a large data set as you need for the
problem you are trying to solve. This is not usually a problem when importing
from sources such as a database, where you can explicitly search for elements
matching a query. But this is a common problem with loading large flat
text or binary files. Rather than loading the entire file, use the appropriate
MATLAB function to load parts of files.

MAT-Files. Load part of a variable by indexing into an object that you create
with the matfile function.

Text Files. Use the textscan function to access parts of a large text file by
reading only the selected columns and rows. If you specify the number of rows
or a repeat format number with textscan, MATLAB calculates the exact
amount of memory required beforehand.

Binary Files. You can use low-level binary file I/O functions, such as fread,
to access parts of any file that has a known format. For binary files of an
unknown format, try using memory mapping with the memmapfile function.

21-15

21 Memory Usage

Image, HDF, Audio, and Video Files. Many of the MATLAB functions
that support loading from these types of files allow you to select portions
of the data to read. For details, see the function reference pages listed in
“Supported File Formats”.

Process Data By Blocks
Consider block processing, that is, processing a large data set one section at a
time in a loop. Reducing the size of the largest array in a data set reduces
the size of any copies or temporaries needed. You can use this technique
in either of two ways:

• For a subset of applications that you can break into separate chunks and
process independently.

• For applications that only rely on the state of a previous block, such as
filtering.

Avoid Creating Temporary Arrays
Avoid creating large temporary variables, and also make it a practice to
clear those temporary variables you do use when they are no longer needed.
For example, when you create a large array of zeros, instead of saving to a
temporary variable A, and then converting A to a single:

A = zeros(1e6,1);
As = single(A);

use just the one command to do both operations:

A = zeros(1e6,1,'single');

Using the repmat function, array preallocation and for loops are other ways
to work on nondouble data without requiring temporary storage in memory.

Use Nested Functions to Pass Fewer Arguments
When working with large data sets, be aware that MATLAB makes a
temporary copy of an input variable if the called function modifies its value.
This temporarily doubles the memory required to store the array, which
causes MATLAB to generate an error if sufficient memory is not available.

21-16

Strategies for Efficient Use of Memory

One way to use less memory in this situation is to use nested functions. A
nested function shares the workspace of all outer functions, giving the nested
function access to data outside of its usual scope. In the example shown here,
nested function setrowval has direct access to the workspace of the outer
function myfun, making it unnecessary to pass a copy of the variable in the
function call. When setrowval modifies the value of A, it modifies it in the
workspace of the calling function. There is no need to use additional memory
to hold a separate array for the function being called, and there also is no
need to return the modified value of A:

function myfun
A = magic(500);

function setrowval(row, value)
A(row,:) = value;
end

setrowval(400, 0);
disp('The new value of A(399:401,1:10) is')
A(399:401,1:10)
end

Using Appropriate Data Storage
MATLAB provides you with different sizes of data classes, such as double and
uint8, so you do not need to use large classes to store your smaller segments
of data. For example, it takes 7 KB less memory to store 1,000 small unsigned
integer values using the uint8 class than it does with double.

Use the Appropriate Numeric Class
The numeric class you should use in MATLAB depends on your intended
actions. The default class double gives the best precision, but requires 8 bytes
per element of memory to store. If you intend to perform complicated math
such as linear algebra, you must use a floating-point class such as a double or
single. The single class requires only 4 bytes. There are some limitations
on what you can do with singles, but most MATLAB Math operations are
supported.

If you just need to carry out simple arithmetic and you represent the original
data as integers, you can use the integer classes in MATLAB. The following is

21-17

21 Memory Usage

a list of numeric classes, memory requirements (in bytes), and the supported
operations.

Class (Data Type) Bytes Supported Operations

single 4 Most math

double 8 All math

logical 1 Logical/conditional operations

int8, uint8 1 Arithmetic and some simple functions

int16, uint16 2 Arithmetic and some simple functions

int32, uint32 4 Arithmetic and some simple functions

int64, int64 8 Arithmetic and some simple functions

Reduce the Amount of Overhead When Storing Data
MATLAB arrays (implemented internally as mxArrays) require room to store
meta information about the data in memory, such as type, dimensions, and
attributes. This takes about 80 bytes per array. This overhead only becomes
an issue when you have a large number (e.g., hundreds or thousands) of
small mxArrays (e.g., scalars). The whos command lists the memory used by
variables, but does not include this overhead.

Because simple numeric arrays (comprising one mxArray) have the least
overhead, you should use them wherever possible. When data is too complex
to store in a simple array (or matrix), you can use other data structures.

Cell arrays are comprised of separate mxArrays for each element. As a result,
cell arrays with many small elements have a large overhead.

Structures require a similar amount of overhead per field (see the
documentation on “Array Headers” on page 21-4 above). Structures with
many fields and small contents have a large overhead and should be avoided.
A large array of structures with numeric scalar fields requires much more
memory than a structure with fields containing large numeric arrays.

Also note that while MATLAB stores numeric arrays in contiguous memory,
this is not the case for structures and cell arrays.

21-18

Strategies for Efficient Use of Memory

Import Data to the Appropriate MATLAB Class
When reading data from a binary file with fread, it is a common error to
specify only the class of the data in the file, and not the class of the data
MATLAB uses once it is in the workspace. As a result, the default double is
used even if you are reading only 8-bit values. For example,

fid = fopen('large_file_of_uint8s.bin', 'r');
a = fread(fid, 1e3, 'uint8'); % Requires 8k
whos a

Name Size Bytes Class Attributes

a 1000x1 8000 double

a = fread(fid, 1e3, 'uint8=>uint8'); % Requires 1k
whos a

Name Size Bytes Class Attributes

a 1000x1 1000 uint8

Make Arrays Sparse When Possible
If your data contains many zeros, consider using sparse arrays, which store
only nonzero elements. The example below compares the space required for
storage of an array of mainly zeros:

A = diag(1e3,1e3); % Full matrix with ones on the diagonal
As = sparse(A) % Sparse matrix with only nonzero elements
whos

Name Size Bytes Class

A 1001x1001 8016008 double array
As 1001x1001 4020 double array (sparse)

You can see that this array requires only approximately 4 KB to be stored as
sparse, but approximately 8 MB as a full matrix. In general, for a sparse
double array with nnz nonzero elements and ncol columns, the memory
required is

• 16 * nnz + 8 * ncol + 8 bytes (on a 64 bit machine)

• 12 * nnz + 4 * ncol + 4 bytes (on a 32 bit machine)

21-19

21 Memory Usage

Note that MATLAB does not support all mathematical operations on sparse
arrays.

How to Avoid Fragmenting Memory
MATLAB always uses a contiguous segment of memory to store a numeric
array. As you manipulate this data, however, the contiguous block can become
fragmented. When memory is fragmented, there may be plenty of free space,
but not enough contiguous memory to store a new large variable. Increasing
fragmentation can use significantly more memory than is necessary.

Preallocate Contiguous Memory When Creating Arrays
In the course of a MATLAB session, memory can become fragmented due
to dynamic memory allocation and deallocation. for and while loops that
incrementally increase, or grow, the size of a data structure each time through
the loop can add to this fragmentation as they have to repeatedly find and
allocate larger blocks of memory to store the data.

To make more efficient use of your memory, preallocate a block of memory
large enough to hold the matrix at its final size before entering the loop. When
you preallocate memory for an array, MATLAB reserves sufficient contiguous
space for the entire full-size array at the beginning of the computation. Once
you have this space, you can add elements to the array without having to
continually allocate new space for it in memory.

For more information on preallocation, see “Preallocating Arrays” on page
20-4.

Allocate Your Larger Arrays First
MATLAB uses a heap method of memory management. It requests memory
from the operating system when there is not enough memory available in the
heap to store the current variables. It reuses memory as long as the size of
the memory segment required is available in the heap.

The following statements can require approximately 4.3 MB of RAM. This is
because MATLAB may not be able to reuse the space previously occupied by
two 1 MB arrays when allocating space for a 2.3 MB array:

a = rand(1e6,1);

21-20

Strategies for Efficient Use of Memory

b = rand(1e6,1);
clear
c = rand(2.3e6,1);

The simplest way to prevent overallocation of memory is to allocate the largest
vectors first. These statements require only about 2.0 MB of RAM:

c = rand(2.3e6,1);
clear
a = rand(1e6,1);
b = rand(1e6,1);

Long-Term Usage (Windows Systems Only)
On 32-bit Microsoft Windows, the workspace of MATLAB can fragment over
time due to the fact that the Windows memory manager does not return
blocks of certain types and sizes to the operating system. Clearing the
MATLAB workspace does not fix this problem. You can minimize the problem
by allocating the largest variables first. This cannot address, however, the
eventual fragmentation of the workspace that occurs from continual use of
MATLAB over many days and weeks, for example. The only solution to this is
to save your work and restart MATLAB.

The pack command, which saves all variables to disk and loads them back,
does not help with this situation.

Reclaiming Used Memory
One simple way to increase the amount of memory you have available is to
clear large arrays that you no longer use.

Save Your Large Data Periodically to Disk
If your program generates very large amounts of data, consider writing the
data to disk periodically. After saving that portion of the data, use the clear
function to remove the variable from memory and continue with the data
generation.

21-21

21 Memory Usage

Clear Old Variables from Memory When No Longer Needed
When you are working with a very large data set repeatedly or interactively,
clear the old variable first to make space for the new variable. Otherwise,
MATLAB requires temporary storage of equal size before overriding the
variable. For example,

a = rand(100e6,1) % 800 MB array
b = rand(100e6,1) % New 800 MB array
Error using rand
Out of memory. Type HELP MEMORY for your options.

clear a
a = rand(100e6,1) % New 800 MB array

21-22

Resolving “Out of Memory” Errors

Resolving “Out of Memory” Errors

In this section...

“General Suggestions for Reclaiming Memory” on page 21-23

“Setting the Process Limit” on page 21-24

“Disabling Java VM on Startup” on page 21-25

“Increasing System Swap Space” on page 21-26

“Using the 3GB Switch on Windows Systems” on page 21-26

“Freeing Up System Resources on Windows Systems” on page 21-27

General Suggestions for Reclaiming Memory
The MATLAB software generates an Out of Memory message whenever it
requests a segment of memory from the operating system that is larger than
what is currently available. When you see the Out of Memory message,
use any of the techniques discussed under “Strategies for Efficient Use of
Memory” on page 21-15 to help optimize the available memory. If the Out of
Memory message still appears, you can try any of the following:

• Compress data to reduce memory fragmentation.

• If possible, break large matrices into several smaller matrices so that less
memory is used at any one time.

• If possible, reduce the size of your data.

• Make sure that there are no external constraints on the memory accessible
to MATLAB. (On The Open Group UNIX3 systems, use the limit command
to check).

• Increase the size of the swap file. We recommend that you configure your
system with twice as much swap space as you have RAM. See “Increasing
System Swap Space” on page 21-26, below.

• Add more memory to the system.

3. UNIX is a registered trademark of The Open Group in the United States and other
countries.

21-23

21 Memory Usage

Setting the Process Limit
The platforms and operating systems that MATLAB supports have different
memory characteristics and limitations. In particular, the process limit is the
maximum amount of virtual memory a single process (or application) can
address. On 32-bit systems, this is the most important factor limiting data set
size. The process limit must be large enough for MATLAB to store all of the
data it is to process, any MATLAB program files, the MATLAB executable
itself, and additional state information.

Where possible, choose an operating system that maximizes this number, that
is, a 64-bit operating system. The following is a list of MATLAB supported
operating systems and their process limits.

Operating System Process Limit

32-bit Microsoft Windows XP, Windows Vista™,
Windows 7

2 GB

32-bit Windows XP with 3 GB boot.ini switch
or 32-bit Windows Vista or Windows 7 with
increaseuserva set (see later)

3 GB

32-bit Linux® (Linux is a registered trademark of
Linus Torvalds)

~3 GB

64-bit Windows or Linux running 32-bit MATLAB ≤ 4 GB

64-bit Windows, Apple Macintosh® OS X, or Linux
running 64-bit MATLAB

8 TB

To verify the current process limit of MATLAB on Windows systems, use
the memory function.

Maximum possible array: 583 MB (6.111e+008 bytes) *
Memory available for all arrays: 1515 MB (1.588e+009 bytes) **
Memory used by MATLAB: 386 MB (4.050e+008 bytes)
Physical Memory (RAM): 2014 MB (2.112e+009 bytes)

* Limited by contiguous virtual address space available.
** Limited by virtual address space available.

21-24

Resolving “Out of Memory” Errors

When called with one output variable, the memory function returns or displays
the following values. See the function reference for memory to find out how
to use it with more than one output.

memory Return Value Description

MaxPossibleArrayBytes Size of the largest single array MATLAB can
currently create

MemAvailableAllArrays Total size of the virtual address space available
for data

MemUsedMATLAB Total amount of memory used by the MATLAB
process

View the value against the Total entry in the Virtual Memory section. It is
shown as 2 GB in the table, which is the default on Windows XP systems. On
UNIX systems, see the ulimit command to view and set user limits including
virtual memory.

Disabling Java VM on Startup
On UNIX systems, you can increase the workspace size by approximately
400 MB if you start MATLAB without the Sun Java VM. To do this, use the
command line option -nojvm to start MATLAB. This also increases the size
of the largest contiguous block (and therefore the largest matrix) by about
the same.

Using -nojvm comes with a penalty in that you will lose many features that
rely on the Java software, including the entire development environment.

Starting MATLAB with the -nodesktop option does not save any substantial
amount of memory.

Shutting down other applications and services (e.g., using msconfig on
Windows systems) can help if total system memory is the limiting factor, but
usually process limit (on 32-bit machines) is the main limiting factor.

21-25

21 Memory Usage

Increasing System Swap Space
The total memory available to applications on your computer is comprised of
physical memory (RAM), plus a page file, or swap file, on disk. The swap file
can be very large (e.g., 16 TB on 32-bit Windows, 512 TB on 64-bit Windows).
The operating system allocates the virtual memory of each process to physical
memory or to the swap file, depending on the needs of the system and other
processes.

Most systems allow you to control the size of your swap file. The steps
involved depend on the system you are running on.

Note There is no interface for directly controlling the swap space on Mac
OS® X systems.

Windows Systems
Use the Windows Control Panel to change the size of the virtual memory
paging file on your system. For more information, refer to the Windows help.

Linux Systems
You can change your swap space by using the mkswap and swapon commands.
For more information on the above commands, type man followed by the
command name at the Linux prompt.

Using the 3GB Switch on Windows Systems
Microsoft Windows XP systems can allocate 3 GB (instead of the default 2
GB) to processes, if you set an appropriate switch in the boot.ini file of the
system. MathWorks recommends that you only do this with Windows XP SP2
systems or later. This gives an extra 1 GB of virtual memory to MATLAB, not
contiguous with the rest of the memory. This enables you to store more data,
but not larger arrays, as these are limited by contiguous space. This is mostly
beneficial if you have enough RAM (e.g., 3 or 4 GB) to use it.

After setting the switch, confirm the new value of the virtual memory after
restarting your computer and using the memory function.

21-26

Resolving “Out of Memory” Errors

[userview systemview] = memory;

systemview.VirtualAddressSpace
ans =

Available: 1.6727e+009 % Virtual memory available to MATLAB.
Total: 2.1474e+009 % Total virtual memory

For more documentation on this option, use the following URL:

http://support.microsoft.com/kb/291988

Similarly, on machines running Microsoft Windows Vista and Windows 7, you
can achieve the same effect by using the command:

BCDEdit /set increaseuserva 3072

For more information on this option, go to the following website:

http://msdn.microsoft.com

Freeing Up System Resources on Windows Systems
There are no functions implemented to manipulate the way MATLAB handles
Microsoft Windows system resources. Windows systems use these resources
to track fonts, windows, and screen objects. Resources can be depleted by
using multiple figure windows, multiple fonts, or several UI controls. One
way to free up system resources is to close all inactive windows. Windows
system icons still use resources.

21-27

http://support.microsoft.com/kb/291988
http://msdn.microsoft.com

21 Memory Usage

21-28

22

Create Help and Demos

• “Types of Help You Can Create” on page 22-2

• “Add Help for Your Program Files” on page 22-4

• “Add Documentation to the Help Browser” on page 22-12

• “Add Demos to the Help Browser” on page 22-48

• “Address Validation Errors for info.xml Files” on page 22-57

22 Create Help and Demos

Types of Help You Can Create
You can provide help and demos for the files you create and have them appear
formatted like the help and demos MATLAB provides. Including help can
be worthwhile for you and others with whom you share your files. As the
following table explains, you can provide help in various forms. The table
presents guidelines for creating the kinds of help that best suit your program
files and the people who need to use them.

Type of Help Description See

Help comments • Describe individual program files you create

• Provide formatted comments at the start of a
MATLAB program file

• Display the help comments when you type help
filename

• Easy to provide

“Add Help for Your
Program Files” on
page 22-4

Contents.m file • Describes a collection of program files

• Provides a summary file for all files in a folder

• Displays the summary when you type help
foldername

• Can include a version number

• Easy to provide

• Can be empty to avoid listing folder contents

“Help Summary for
Your Program Files
(Contents.m)” on
page 22-6

MATLAB class files • Describes classes you create

• Provides help in the class definition file, and
optionally for class methods, properties and
events

• View the help by running help classname or
doc classname

• Easy to provide, but requires object-oriented
programming knowledge to create classes

“Help for Classes You
Create” on page 22-7

22-2

Types of Help You Can Create

Type of Help Description See

Documentation in
the Help browser

• Supports graphics, images, stylized text,
and page formatting. Suited for how-to and
conceptual information that helps others run
your files

• Can include reference pages for functions and
blocks

• Can include a search database to support
searching your documentation

• More effort than providing help in program files

• Requires the ability to create HTML files and
edit XML files

“Add Documentation
to the Help Browser”
on page 22-12

Demos in the Help
browser

• Suited for explaining how something works,
step-by-step. Supports graphics, images,
stylized text, and page formatting

• Others can view, edit and run your demos

• Can be generated from code scripts

• View the demos using the Contents pane in the
Help browser

“Add Demos to the
Help Browser” on
page 22-48

22-3

22 Create Help and Demos

Add Help for Your Program Files

In this section...

“Help Within a Program File” on page 22-4

“Help Summary for Your Program Files (Contents.m)” on page 22-6

“Help for Classes You Create” on page 22-7

Help Within a Program File
Help consists of lines of comments at the beginning of a program file. Help
that you add to your file displays like the help for MATLAB functions. The
first help text line, often called the H1 line, includes the function name and a
brief description.

For example, here is an excerpt from the file hist.m:

function [no,xo] = hist(varargin)

%HIST Histogram.

% N = HIST(Y) bins the elements of Y into 10 equally spaced containers

% and returns the number of elements in each container. If Y is a

% matrix, HIST works down the columns.

%

% N = HIST(Y,M), where M is a scalar, uses M bins.

%

% N = HIST(Y,X), where X is a vector, returns the distribution of Y

% among bins with centers specified by X. The first bin includes

% data between -inf and the first center and the last bin

% includes data between the last bin and inf. Note: Use HISTC if

% it is more natural to specify bin edges instead.

%

% Class support for inputs Y, X:

% float: double, single

%

% See also HISTC, MODE.

When you type help hist, the help text displays in the Command Window:

hist Histogram.

22-4

Add Help for Your Program Files

N = hist(Y) bins the elements of Y into 10 equally spaced containers

and returns the number of elements in each container. If Y is a

matrix, hist works down the columns.

N = hist(Y,M), where M is a scalar, uses M bins.

N = hist(Y,X), where X is a vector, returns the distribution of Y

among bins with centers specified by X. The first bin includes

data between -inf and the first center and the last bin

includes data between the last bin and inf. Note: Use HISTC if

it is more natural to specify bin edges instead.

Class support for inputs Y, X:

float: double, single

See also histc, mode.

Overloaded methods:

fints/hist

categorical/hist

Reference page in Help browser

doc hist

Create See also links by including function names at the end of your help
text on a line that begins with % See also. The list of names can include
MATLAB functions, toolbox functions, and your own functions. If the function
exists on the search path or in the current folder, the help command displays
each of these function names as a hyperlink to its help. Otherwise, MATLAB
prints the function names as they appear in the help text.

End your help text with a blank line (without a %).

Tip To make your help easy for readers to follow, be consistent in how you
structure it.

You can include hyperlinks (in the form of URLs) to HTML files or Web
sites anywhere in your help text. Create hyperlinks by including an HTML

22-5

22 Create Help and Demos

<A> anchor element. Within the anchor, use a matlab: statement
(pronounced matlabcolon) to execute a web command. For example:

% For more information, see <a href="matlab:
% web('http://www.mathworks.com')">the MathWorks Web site.

When you are connected to the Internet and click the link, MATLAB opens a
Web browser window to display the URL. For more information, see “Display
Hyperlinks in the Command Window”.

For information about formatting help in the Editor, see “Add Comments”.

For related information, see “Generating a Summary View of the Help
Components in Functions and Scripts”.

Help Summary for Your Program Files (Contents.m)
Provide a summary file for your own collection of program files using the
same method as MATLAB. In MATLAB, each folder containing program files
includes a file named Contents.m (with a capital C) that lists the functions in
the folder with a brief description of each. You can view the information in a
Contents.m file from the command line in several ways:

• help foldername displays the text from the Contents.m file for that folder.
The displayed help has hyperlinks to help for the individual functions.

• doc foldername displays the same information in the Help browser.

• ver toolboxname displays version information for the specified toolbox,
followed by its formatted Contents.m file entries.

To create your own Contents.m files:

• In the Editor, display a Contents.m file provided with MATLAB to see its
structure. Most folders in the program tree contain a Contents.m file. For
an example, see matlabroot\toolbox\matlab\helptools\Contents.m.

• Read about “Displaying and Updating a Report on the Contents of a Folder”
to learn how to easily create and maintain your Contents.m files.

• Provide your own toolbox name, a version, and a date in the first two lines
of the Contents.m file, which the ver function displays:

22-6

Add Help for Your Program Files

% Toolbox name description
% Version xxx dd-mmm-yyyy

Do not include any spaces in the date. Use this format: 12-Mar-2010.

Tip If you do not want your users to see a summary of your toolbox functions,
place an empty Contents.m file in the toolbox folder. An empty Contents.m
causes help foldername to report No help found for foldername.

The Upslope Area toolbox example folder contains a Contents.m file. For
more information, see “Learning to Add Help from Examples” on page 22-13.

You can create a categorical listings of functions for the Help browser by
marking up your Contents.m file and publishing it to HTML. To learn more,
see “Creating Function and Block Category Listings” on page 22-33.

Help for Classes You Create
If you create your own MATLAB classes, you can provide help for the class
by including comments in the class definition file:

• Provide help about the class in comment lines directly following the
classdef statement.

• Add a comment line directly after the constructor method for the class.

• Add comments directly after other methods and next to property definitions.

List the properties and methods of the class within the first block of comments
after classdef. If you format the list in as described here, MATLAB renders
the property and method names you list as hyperlinks to their definitions,
which appear later in the same file:

1 To create links from this section to your class properties, add a line:

% Classname Properties:

where Classname is the name from your classdef. Be sure to put a colon
(:) after Properties.

22-7

22 Create Help and Demos

2 List your property names (with optional same-line descriptions) on the
following lines. For example:

% prop1 - first property
% prop2 - second property

3 List the methods; enter the class name followed by Methods: (include a
colon). Then, list your methods (with optional same-line descriptions) on
the following lines, as follows:

% MyClass Methods:
% method1 - first method
% method2 - second method

View help for your class in the Command Window:

help classname

To view the same help for the class in the Help browser, run:

doc classname

Note You do not need to prepare HTML versions of class definition file help.
MATLAB generates an HTML page from each class definition automatically
and displays it in the Help browser.

For more information about getting help for classes, read the following
section. To learn more about how to create class definitions, see “User-Defined
Classes”.

Example of Help for a Externally Supplied Class
The following example shows help for a class file, sads.m, an example
provided with MATLAB documentation. If you create help for your class files,
the help should look and work like this example.

Follow these steps to see the help for the example.

1 Make sure you can access the examples folder by either:

22-8

Add Help for Your Program Files

• Making the folder containing the example file as your current folder:

cd(fullfile(matlabroot,'help','techdoc','matlab_env', 'examples'))

• Adding the examples folder to the search path:

addpath(fullfile(matlabroot,'help','techdoc','matlab_env', 'examples'))

Or, Click here to add the help examples folder to the search path.

2 Open the class file in the Editor to see the help comments.

open('sads.m')

3 View help for the sads class in the Help browser:

doc sads

22-9

22 Create Help and Demos

4 Access more information by following links on the class help page or by
using the doc function. For example, to get help for the steer method, do
one of the following:

• Click the steer link under Method Summary.

22-10

Add Help for Your Program Files

• Run doc sads.steer.

You also can open the sads.m file by clicking the View code for sads link
at the top of the sads help page, as described previously.

5 Next, view information about sads objects another way. Create an instance
of sads, for example, sensorArray, and then open that object in the
Variable Editor:

loadparameters

sensorArray=sads(Data, Wavelength,SampleRate,Spacing,Name);

openvar sensorArray % or double-click sensorArray in the Workspace browser

22-11

22 Create Help and Demos

Add Documentation to the Help Browser

In this section...

“Types of Documentation You Can Provide” on page 22-12

“Learning to Add Help from Examples” on page 22-13

“Summary of Creating and Installing HTML Help Files” on page 22-14

“Organizing Your Documentation” on page 22-15

“Creating Function Reference Pages” on page 22-28

“Creating Function and Block Category Listings” on page 22-33

“Making Your HTML Help Files Searchable” on page 22-40

“Summary of Workflow for Providing HTML Help Files” on page 22-42

Types of Documentation You Can Provide
MathWorks and third parties provide a rich set of toolboxes, blocksets, and
target and link products. Almost all such products come with documentation
that displays in the Help browser.

If you create a toolbox that works with MathWorks products—even if it only
contains a few functions—you can include with it HTML help files that you
and others can access using the Help browser. Providing HTML help files
for your toolbox allows you to include figures, diagrams, screen captures,
equations, and formatting to make your toolbox more usable.

Consider providing the following types of content in your documentation:

• A start page for your toolbox (called a “roadmap”)

• A quick introduction to your toolbox (“getting started guide”)

• A detailed explanation of using your toolbox (“user guide”)

• Function or block reference pages

• A list of examples, hyperlinked to the documentation set

• Release notes, describing improvements, limitations, known bugs, and
so forth

22-12

Add Documentation to the Help Browser

• PDF versions of your HTML files (typically accessed from the roadmap
page)

Except for the PDF version of documentation, each of these types of help is a
set of one or more HTML pages that you create in the Editor, word processing
software, or an HTML authoring environment. Many such applications can
also export their source documents as PDF files.

Note You are free to organize and format your help documentation as you
choose. However, if you structure your help files similarly to documentation
from MathWorks, people who use it will understand where to find specific
types of information.

Learning to Add Help from Examples
To learn how to create documentation for the Help browser, refer to examples.
This documentation provides two folders that you can copy. These folders
contain:

• Template XML files containing required and optional sections, with
explanatory comments

You find this folder in
matlabroot/help/techdoc/matlab_env/examples/templates. Always
work with copies of the files it contains when making modifications. You
must edit in your own content to the templates to make them usable.

• A complete toolbox with code you can run (called Upslope Area Toolbox),
accompanied by extensive HTML documentation that you can view in the
Help browser

Find this example in the folder
matlabroot/help/techdoc/matlab_env/examples/upslope. You can use
functions from the toolbox and view the help by adding the folder to the
search path. However, if you choose to modify any of the files it contains,
copy the entire upslope folder to a working folder.

22-13

22 Create Help and Demos

Note Some functionality of Upslope Area Toolbox depends on Image
Processing Toolbox™. If you have Image Processing Toolbox installed,
clicking here brings you to its documentation.

The following sections primarily discuss the XML template files for info.xml
and helptoc.xml, showing you how to modify them to create a documentation
set. The examples folder provides templates only for XML files, not
HTML files. Therefore, to understand how the XML files access HTML
documentation files and what those files contain, refer to corresponding files
in the example Upslope Area Toolbox folder.

Summary of Creating and Installing HTML Help Files
To add your own documentation to the Help browser, you need to:

1 Decide what types of documentation you want to provide and create HTML
help files for your toolbox. See “Types of Documentation You Can Provide”
on page 22-12.

2 Create an info.xml and helptoc.xml files based on examples. See
“Organizing Your Documentation” on page 22-15.

3 Optionally create a search database to include your HTML help files in
the Help browser search results. See “Making Your HTML Help Files
Searchable” on page 22-40.

4 Add the HTML files to the Help browser, by editing and incorporating
XML and other special files you create. For step-by-step instructions, see
“Summary of Workflow for Providing HTML Help Files” on page 22-42.

5 Provide the help files to your program users, along with instructions for
including the files in the Help browser.

To create HTML help files, use the MATLAB Editor, another text editor, or
an HTML editing tool. If you have an XML authoring system, you can develop
documentation in that environment and export it as HTML files.

22-14

Add Documentation to the Help Browser

If you use the Editor, enabling syntax highlighting and indenting features
will help as you author HTML and XML files. The editor can automatically
color syntax for .htm, .html, and .xml source files.

Tip To customize the syntax highlighting and indenting in the Editor,
select File > Preferences > Editor/Debugger > Language, and choose
XML/HTML.

Verify how your HTML files appear in the Help browser. To view an HTML
help file that you created, use the web function. For example, display an
HTML file from the set of examples provided for this topic:

web(fullfile(matlabroot, 'help','techdoc','matlab_env' ,...

'examples','upslope','html','upslope_functions_by_cat.html'))

Organizing Your Documentation
After you decide which types of documentation to show in the Help browser,
you need to provide HTML and XML files, and link them to work together.
The following sections describe how to set up your help documentation.

• “Setting Up a Help Folder” on page 22-16

• “XML Files Required to Add Documentation and Demos” on page 22-18

• “Identifying a Help Folder: the info.xml File” on page 22-18

• “Customizing the info.xml Template File” on page 22-21

• “More About the info.xml File” on page 22-22

• “Creating the Table of Contents File: helptoc.xml” on page 22-24

• “More About the helptoc.xml File” on page 22-27

22-15

22 Create Help and Demos

Note To view the content and organization of the Upslope Area toolbox
documentation example, place it on the search path by clicking here, or run
this command:

addpath(fullfile(matlabroot, 'help','techdoc','matlab_env','examples','upslope'))

Setting Up a Help Folder
Make a folder to hold HTML and XML files. The folder can contain subfolders
to organize HTML and image files. It can also contain MATLAB program
files for your toolbox, or you can locate your code files in a different folder. A
typical toolbox folder contains the following kinds of elements:

Note Folders and file names that you specify are in italics in this listing.
Folders are prefixed with a forward slash (/). On the right side, comments
that are in italics are directives for you to follow.

/mytoolbox Top level folder for toolbox
documentation; can also contain
your program files.

info.xml
Indicates to MATLAB that this
folder contains Help browser
documentation, and points to
content. Required; must have this
file name.

*.m
*.mat
*.fig

...

Program code, data, GUI, and other
files for your toolbox. You can also
locate program files in a separate
folder or a subfolder of this one
that you place on the search path.
Also include a Contents.m file here
summarizing the program files.

22-16

Add Documentation to the Help Browser

/html
Optional subfolder for your HTML
documentation content; it can have
any name, which must be specified
in your info.xml file.

helptoc.xml
Defines hierarchy of help files.
Required; must have this file name.

mytoolbox_
product_page.html

Roadmap (start page) for your
documentation. Use folder name
followed by ”_product_page.html”.
Optional but recommended.

getting_started_1.html
...

getting_started_n.html

Optional content for getting started
guide.

user_guide_1.html
...

user_guide_n.html

Content for user guide.

helpfuncbycat.html
Optional functions-by-category
listing containing links to function
reference HTML files.

release_note_1.html
...

release_note_n.html

Release notes files.

/graphics
Optional subfolder for images used
in HTML pages; when you use a
subfolder, HTML <image> elements
must specify this path to image files.

image_1.png
...

image_n.gif

Bitmap graphics files (usually .gif,
.png, or .jpg). Do not store custom
icons for the TOC here, as they
cannot be found.

22-17

22 Create Help and Demos

/reference
Optional subfolder for function or
block reference pages; when you use
a subfolder, HTML <A> hyperlinks
to reference pages must specify this
path.

function_1.html
...

function_n.html

Function/block reference page files.

XML Files Required to Add Documentation and Demos
The Help Browser relies on several files coded in XML to recognize and
present the contents of documentation and demos. These files always have
the same names:

• info.xml — Required file that indicates that a folder contains
documentation or demos.

• helptoc.xml— Required file that provides a structure for presenting the
documentation set in the Contents pane.

• demos.xml— Optional file to add your demos to the Other Demos section
of the Contents pane. See “Add Demos to the Help Browser” on page 22-48.

In addition, you must create and provide the HTML content pages referenced
by these files and graphic files for images that they display.

Identifying a Help Folder: the info.xml File
The info.xml file specifies the content type, name, and icon to display for
your documentation set. It also identifies where to find your HTML help files,
and defines items you add to the Start button. You must create a file named
info.xml for each toolbox you document. When you include a file having
this name in a folder and then add that folder to the search path, MATLAB
adds the documentation for your toolbox to the Help browser Contents pane.
The folder that info.xml identifies as <help_location> must contain your
HTML documentation and a file named helptoc.xml.

The following listing is a template for info.xml that you can adapt to describe
your toolbox:

22-18

Add Documentation to the Help Browser

<productinfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="optional">

<?xml-stylesheet type="text/xsl"href="optional"?>

<!-- info.xml file for the mytoolbox toolbox -->

<!-- Version 1.0 -->

<!-- Copyright (date) (owner).-->

<!-- Supply the following six elements in the order specified -->

<!-- (Required) element; matlabrelease content is not currently used -->

<matlabrelease>2010a</matlabrelease>

<!-- (Required) The name element appears in the Contents pane -->

<name>MyToolbox</name>

<!-- (Required) The type elementidentifies your package; pick one: -->

<!-- matlab, toolbox, simulink, blockset, links_targets -->

<type>toolbox</type>

<!-- (Optional) icon file to display in the Start button -->

<icon>sampleicon.gif</icon>

<!-- (Required if you supply help) relative path to help (HTML) folder -->

<help_location>./HTMLfolderName</help_location>

<!-- (Required if you supply help) icon used in the Help browser TOC -->

<help_contents_icon>$toolbox/matlab/icons/bookicon.gif</help_contents_icon>

<!-- - - - - - - - - - - - - Start menu - - - - - - - - - - - - - - - -->

<!-- Optional list of entries to display on Start Menu -->

<!-- Callback items are function calls or commands for toolbox -->

<!-- Refresh the Start button to see your entries -->

<!-- Remove this list if you do not want a Start button entry -->

<list>

<listitem>

<!-- The label provides the text for this menu item -->

<label>MyToolbox Documentation</label>

<!-- This callback is a command to open your documentation -->

<callback>

web ./html/mytoolbox_product_page.html -helpbrowser

</callback>

<!-- Menu item icon (a toolbox icon from the help browser) -->

<icon>$toolbox/matlab/icons/bookicon.gif</icon>

</listitem>

<listitem>

<!-- A menu item label for a opening a GUI -->

22-19

22 Create Help and Demos

<label>MyToolbox GUI</label>

<!-- A command to open a GUI, if any -->

<callback>mytoolboxgui</callback>

<!-- The icon for this menu item -->

<icon>$toolbox/matlab/icons/figureicon.gif</icon>

</listitem>

<listitem>

<!-- A menu item label for a opening a demo -->

<label>MyToolbox Demo</label>

<!-- A command to open a demo if any -->

<callback>mytoolboxdemo</callback>

<!-- The icon for this menu item -->

<icon>HelpIcon.DEMOS</icon>

</listitem>

<listitem>

<!-- Include call to open your Web site, if any -->

<label>MyToolbox Web Site</label>

<callback>web http://www.mathworks.com -browser</callback>

<icon>$docroot/techdoc/matlab_env/examples/webicon.gif</icon>

</listitem>

<!-- Add listitems for other features of your toolbox... -->

</list>

<!-- - - - - - - - - - - - - Start menu - - - - - - - - - - - - - - - -->

</productinfo>

Note To avoid XML validation errors, include all required elements in the
order specified by the template file. If you are not adding a toolbox to the
Start button menu, omit the lines bracketed by

<!-- - - - - - - - - - - - - Start menu - - - - - - - - - - - - - - - -->

For more information, see “Address Validation Errors for info.xml Files” on
page 22-57

Replace the contents within the <matlabrelease>, <name>, <type>, and
<help_location> elements with appropriate text for your toolbox. The
contents of <help_location> is folder name, which usually includes a relative
path. Typically, you place the help folder within the folder containing the

22-20

Add Documentation to the Help Browser

info.xml file. You can include comments in info.xml or any other XML file.
For example, you can add copyright and contact information. Lines starting
with <!-- and ending with--> contain comments.

When you add a help folder to the Help browser for the first time, take the
following actions:

1 Add your toolbox or blockset folder to the search path

Make sure that the folder you are adding is not your current folder when
you perform this step.

2 Open MATLAB Preferences from the File menu.

3 Click Help, and then select the All Products button.

After MATLAB has identified your folder as a toolbox or blockset and
displayed it in the Help browser, you can remove products from the Help
browser you do not need to show.

Customizing the info.xml Template File
To specify and structure your own documentation content, copy, edit, and save
the template file, as follows:

1 In the Editor, open the XML template. You can either:

• Copy the preceding listing and paste it into a new blank document.

• Copy the info_template.xml template example file to your current
folder:

copyfile(fullfile(matlabroot,'help','techdoc','matlab_env', ...

'examples','templates','info_template.xml'),pwd), ...

fileattrib('info_template.xml','+w')

or click here to copy the template. Then, open the copy in the Editor.

2 Save the file as info.xml in your toolbox folder. Saving as a .xml file
enables Editor syntax highlighting.

22-21

22 Create Help and Demos

3 Replace italicized text in the listing with your own content.

4 If you are not adding any items to the Start menu, delete the - - Start
menu - - section. If you want to customize the Start menu, you must
modify the listitem elements. For instructions, see “Add Your Own
Toolboxes to the Start Button”.

5 Resave the info.xml file when you finish making changes.

More About the info.xml File
The info.xml file adds the HTML help files to the Help browser and
items to the Start menu. The following table describes the example
info.xml file provided as a toolbox template. The source file is
matlabroot/help/techdoc/matlab_env/examples/templates/info_template.xml.

XML Tag Description Value in Template Notes

<matlabrelease> Release of
MATLAB

R2010a Required. Not currently
parsed, but indicates when
you added help files.

<name> Title of
toolbox

mytoolbox Required. The name of your
toolbox that appears in the
Help browser Contents pane.

<type> Determines
the toolbox
location in
the Help
browser
Contents

toolbox Required. Allowable values:
matlab, toolbox, simulink,
blockset, links_targets,
other. The Upslope Area
toolbox example appears with
other toolboxes. The entry has
the orange book icon used for
toolboxes.

<icon> Icon for your
toolbox help
in the Start
button

sampleicon.gif If you add your toolbox to
the Start button options
and include a help entry
there, specify an icon image
file. For more information,
see the <list><listitem>
description.

22-22

Add Documentation to the Help Browser

XML Tag Description Value in Template Notes

<help_location> Location of
help files

./HTMLfolderName Name of subfolder containing
helptoc.xml and HTML
help files you provide
for your toolbox. If not a
subfolder, specify the path
to help_location relative
to the info.xml file. If you
provide HTML help files
for multiple toolboxes, each
help_location must be a
different folder.

<help_contents_icon> Icon to
display in
Help browser
Contents
pane

$toolbox/matlab/
icons/bookicon.gif

Required if you supply HTML
help files.

<list>
<listitem> ...

Entries for
Start button

various If you also want your toolbox
to appear as a Start button
option, add at least one
listitem. For details, see
“Add Your Own Toolboxes to
the Start Button”.

When you set up an XML file, make sure that:

• You include all required entries;

• The entries are in the same order as in the preceding list and in the
template;

• File and folder names in the XML exactly match the names of your files
and folders and use upper and lower case letters identically.

For examples, look at the info.xml file for any MathWorks product. To view
one of these files:

1 Select Start > Desktop Tools > View Start Button Configuration
Files files.

22-23

22 Create Help and Demos

2 From the resulting Start Button Configuration Files dialog box, select the
product.

3 Click Open to view the info.xml file in the Editor.

Note The info.xml files for MathWorks products contain custom constructs
and features that externally supplied info.xml files cannot implement.

Creating the Table of Contents File: helptoc.xml
You must also create a file named helptoc.xml. Place this file in the folder
containing your HTML documentation files. This folder is designated as
<help_location> in your info.xml file. Within a top-level <toc> element,
nest <tocitem> elements to define the structure of your table of contents.
This template for helptoc.xml explains its organization:

<?xml version='1.0' encoding="utf-8"?>

<toc version="2.0">

<!-- First tocitem specifies top level in Help browser Contents pane -->

<!-- This can be a roadmap page, as shown below, or a content page -->

<tocitem target="mytoolbox_product_page.html">MyToolbox Toolbox

<!-- Nest tocitems to create hierarchical entries in Contents-->

<!-- To include icons, use the following syntax for tocitems: -->

<!-- <tocitem target="foo.html" image="HelpIcon.NAME"> -->

<!-- Title-of-Section </tocitem> -->

<!-- where NAME is one of the following (use capital letters): -->

<!-- FUNCTION, USER_GUIDE, EXAMPLES, BLOCK, GETTING_STARTED, -->

<!-- DEMOS, RELEASE_NOTES -->

<!-- Icon images used for these entries are also stored in -->

<!-- matlabroot/toolbox/matlab/icons -->

<!-- A Getting Started Guide usually comes first -->

<tocitem target="mytbx_gs_top.html" image="HelpIcon.GETTING_STARTED">

Getting Started with the MyToolbox Toolbox

<tocitem target="mytbx_reqts_example.html">System Requirements

</tocitem>

<tocitem target="mytbx_features_example.html">Features

<!-- 2nd and lower TOC levels usually have anchor IDs -->

<tocitem target="mytbx_feature1_example.htm#10187">Feature 1

22-24

Add Documentation to the Help Browser

</tocitem>

<tocitem target="mytbx_feature2_example.htm#10193">Feature 2

</tocitem>

</tocitem>

</tocitem>

<!-- User Guide comes next -->

<tocitem target="mytbx_ug_intro.html"

image="HelpIcon.USER_GUIDE">MyToolbox User Guide

<tocitem target="mytbx_ch_1.html">Setting Up MyToolbox

</tocitem>

<tocitem target="mytbx_ch_2.html">Processing Data

</tocitem>

<tocitem target="mytbx_ch_3.html">Verifying MyToolbox outputs

<tocitem target="mytbx_ch_3a.html">Handling Test Failures

</tocitem>

</tocitem>

</tocitem>

<!-- Function reference next -->

<!-- The first file lists all of the functions, categorizing them -->

<tocitem target="function_categories.html">Functions

<!-- First category, with link to anchor in above page -->

<tocitem target="function_categories.html#1">First Category

<!-- Inside category, list its functions alphabetically -->

<tocitem target="function_1.html">function_1</tocitem>

<tocitem target="function_2.html">function_2</tocitem>

<!-- ... -->

</tocitem>

<!-- Second category, with link to anchor in above page -->

<tocitem target="helpfuncbycat.html#2">Second Category</tocitem>

<!-- Inside category, list its functions alphabetically -->

<tocitem target="function_3.html">function_3</tocitem>

<tocitem target="function_4.html">function_4</tocitem>

<!-- ... -->

</tocitem>

<!-- Third category, with link to anchor in above page -->

<tocitem target="helpfuncbycat.html#3">Third category</tocitem>

<!-- ... -->

</tocitem>

</tocitem>

<!-- Optional List of Examples, with hyperlinks to examples in other files -->

22-25

22 Create Help and Demos

<tocitem target="mytbx_example.html"

image="HelpIcon.HelpIcon.EXAMPLES">Mytoolbox Examples

</tocitem>

<!-- Optional link or links to your or other Web sites -->

<tocitem target="http://www.mathworks.com"

image="$toolbox/matlab/icons/webicon.gif">

MyToolbox Web Site (Example only: goes to mathworks.com)

</tocitem>

</tocitem>

</toc>

Be sure that file and path names exactly match those of the files and
folders they identify and use upper and lower case letters identically. Your
helptoc.xml can be shorter or longer than the template. The size of the
file depends on the structure of your documentation and how many HTML
files it contains.

Most tables of contents have two to four hierarchical levels. Lower levels can
either specify subheadings within the top-level HTML file or separate HTML
files. A <tocitem> can link to subheadings by specifying anchor IDs for them.
For example, this one,

<tocitem target="mytbx_feature1_example.html#107">Feature 1</tocitem>

specifies a link to the named anchor #107 within the file
mytbx_feature1_example.html. Anchor IDs always start with a pound
sign (#).

Create anchors for referencing headings or other HTML content with
Any content elements. If your documentation
set includes HTML files that are not listed in helptoc.xml, at least one
file found in the table of contents must contain hyperlinks to them, so that
readers can find them. For related information, see “Creating Function and
Block Category Listings” on page 22-33.

To customize the helptoc template file:

1 In the Editor, open the helptoc XML template. You can either:

• Copy the preceding listing and paste it into a new blank document.

22-26

Add Documentation to the Help Browser

• Copy the helptoc_template.xml template example file to your current
folder:

copyfile(fullfile(matlabroot,'help','techdoc','matlab_env', ...

'examples','templates','helptoc_template.xml'),pwd), ...

fileattrib('helptoc_template.xml','+w')

or click here to copy the template. Then, open the copy in the Editor.

2 Save the file as helptoc.xml in your toolbox folder. Saving as a .xml file
enables Editor syntax highlighting.

3 Replace italicized text in the listing with your own content.

4 Resave the helptoc.xml file when you finish making changes.

More About the helptoc.xml File
The info.xml file inserts your toolbox in the alphabetic listing of toolboxes
or blocksets in the Contents pane. The helptoc.xml defines a hierarchy of
entries within it. Each <tocitem> entry in the helptoc.xml file references
one of your HTML help files or anchor IDs within that product entry. The
helptoc_template.xml file that is provided as an example has the structure
most toolboxes use.

You can display icons for your Contents pane entries within your toolbox. To
use standard MathWorksMathWorks Help browser icons, include any of the
following icons as image attributes for <tocitem> elements.

Icon Use For Image Tag String

Getting
Started
Guides

HelpIcon.GETTING_STARTED

User Guides HelpIcon.USER_GUIDE

Functions HelpIcon.FUNCTION

Blocks HelpIcon.BLOCK

22-27

22 Create Help and Demos

Icon Use For Image Tag String

Examples HelpIcon.EXAMPLES

Release
Notes

HelpIcon.RELEASE_NOTES

Demos HelpIcon.DEMOS

To make your documentation consistent with MathWorks documentation,
organize your table of contents entries in the preceding order .

Include the icons as image attributes in top-level TOC entries. If you provide
a roadmap page, also include icons for second-level TOC entries under the
roadmap. Nest tocitem entries for the target chapters or pages within each
such TOC entries, for example:

<tocitem target="get_start_top.html" image="HelpIcon.GETTING_STARTED">About Mytoolbox

<tocitem target="get_start_capabilities.html"> Capabilities </tocitem>

<tocitem> ... </tocitem>

...

</tocitem>

The markup indicates that you have a file called get_start1.html that
begins a getting started guide. The HTML pages it contains appear next,
coded as nested tocitem elements.

Creating Function Reference Pages
Unless you prefer to hide a function from your users, provide an HTML
reference page for it. If your program (.m) files contain help text, you already
have the content you need to add reference pages to the Help browser. If your
program files do not yet include help text, consider adding help as a first step.
For details, see “Add Help for Your Program Files” on page 22-4.

You can create a reference page in an HTML authoring environment by
importing the help text for a function and formatting the text. For example,
you need to remove the percent sign (%) character from the beginning of
each line of text, and make sure that spaces separate words. You can then
format headings, words, phrases, and examples for HTML display. Finally,
you can add image attributes to display graphics such as GUIs, diagrams, and

22-28

Add Documentation to the Help Browser

graphic output from your code, and hyperlinks to See also items and other
related documentation.

Consider creating reference pages from within MATLAB. You can use
the capability of MATLAB to publish program scripts directly to HTML
documents.

To transform help text from a program file into HTML using the publish
command:

1 Copy the help text into a new file, and remove the code that implements
the function.

2 Save this file as a MATLAB script (which has no initial function
declaration).

3 Format the help text using code cell notation. For more information, see
“Overview of Publishing MATLAB Code”.

4 Publish the script as an HTML file.

The following listings illustrate such a transformation for the
upslopeArea.m function from the example Upslope Area toolbox
files to a cell script version of its help text, upslopeArea_help.m.
Find the original program files in the examples folder
matlabroot/help/techdoc/matlab_env/examples/upslope. See the
subfolder matlabroot/help/techdoc/matlab_env/examples/upslope/html
for the cell-scripted versions and the HTML generated from publishing those
files.

After formatting and saving upslopeArea_help.m, the command

publish upslopeArea_help.m

generates a file named upslopeArea_help.html in a subfolder. By default,
this folder is named html, but you can specify a different name for the
folder by configuring the publish command, as described in “Specify Output
Preferences for Publishing”. (Placing all your reference pages in the same
folder simplifies accessing them.)

22-29

22 Create Help and Demos

Original Upslope Area Toolbox Function upslopeArea.m file
% upslopeArea Upslope area measurements for a DEM

%

% DESCRIPTION

% A = upslopeArea(E, T) computes the upslope area for each pixel of the

% DEM matrix, E. T is the sparse system of linear equations computed

% by flowMatrix; it represents the distribution of flow from pixel to

% pixel. A contains the upslope area for each corresponding pixel of E.

%

% Note: Connected groups of NaN pixels touching the border are treated as

% having no contribution to flow.

%

% REFERENCE

% Tarboton, "A new method for the determination of flow

% directions and upslope areas in grid digital elevation models," Water

% Resources Research, vol. 33, no. 2, pages 309-319, February 1997.

%

% ALGORITHM NOTES

% The Tarboton paper is not very specific about the handling of plateaus. For

% details of how plateaus are handled in this code, see the algorithm notes for

% the function flowMatrix. In particular, see the subfunction

% plateau_flow_weights in flowMatrix.m.

%

% EXAMPLE

% s = load('milford_ma_dem');

% E = s.Zc;

% R = demFlow(E);

% T = flowMatrix(E, R);

% A = upslopeArea(E, T);

% imshow(log(A), [])

%

% See also demFlow, dependenceMap, fillSinks, flowMatrix, postprocessPlateaus.

% Steven L. Eddins

% Copyright 2007-2009 The MathWorks, Inc.

function A = upslopeArea(E, T)

requiresIPT(mfilename);

22-30

Add Documentation to the Help Browser

% Right-side vector is normally all ones, reflecting an equal contribution

% to water flow originating in each pixel.

rhs = ones(numel(E), 1);

% Connected groups of NaN pixels that touch the border do not contribute

% to water volume.

mask = borderNans(E);

rhs(mask(:)) = 0;

A = T \ rhs;

A = reshape(A, size(E));

Upslope Area Toolbox Reference Page Script
upslopeArea_help.m file
%% upslopeArea

% Upslope area measurements for a DEM

%

%% Description

% |A = upslopeArea(E, T)| computes the upslope area for each pixel of the

% DEM matrix, |E|. |T| is the sparse system of linear equations computed

% by |flowMatrix|; it represents the distribution of flow from pixel to

% pixel. |A| contains the upslope area for each corresponding pixel of |E|.

%

% Note: Connected groups of NaN pixels touching the border are treated as

% having no contribution to flow.

%

%% Reference

% Tarboton, "A new method for the determination of flow

% directions and upslope areas in grid digital elevation models," _Water

% Resources Research_, vol. 33, no. 2, pages 309-319, February 1997.

%

%% Algorithm notes

% The Tarboton paper is not very specific about the

% handling of plateaus. For details of how plateaus are handled in this

% code, see the algorithm notes for the function |flowMatrix|. In

% particular, see the subfunction |plateau_flow_weights| in |flowMatrix.m|.

%

%% Example

22-31

22 Create Help and Demos

s = load('milford_ma_dem');

E = s.Zc;

R = demFlow(E);

T = flowMatrix(E, R);

A = upslopeArea(E, T);

imshow(log(A), [])

%% See also

% <demFlow_help.html |demFlow|>, <dependenceMap_help.html |dependenceMap|>,

% <fillSinks_help.html |fillSinks|>, <flowMatrix_help.html |flowMatrix|>,

% <postprocessPlateaus_help.html |postprocessPlateaus|>.

%%

% Copyright 2007-2009 The MathWorks, Inc.

As you see, the script file, upslopeArea_help.m, does not contain the lines
of code that implement the function or comments embedded in that code.
However, the file does contain code for the example of using the function and
all the help text. The See also entries to other toolbox functions are hyperlinks,
which you manually edit to use the syntax <function_name_help.html
function_name>.

Published Upslope Area Toolbox Reference Page
upslopeArea_help.html File
When you show the published output file with web(upslopeArea_help.html),
the beginning of the reference page resembles the following figure.

22-32

Add Documentation to the Help Browser

Near the end of the published reference page, a screen capture from imshow
appears, automatically inserted by publish.

Creating Function and Block Category Listings
To make your reference pages more useful, also include a Functions (or
Blocks, for blocksets) entry for them in the Contents pane of the Help

22-33

22 Create Help and Demos

browser. Expanding one of these entries can display a list of categories.
Each category lists the associated functions (or blocks), along with a brief
description of the category and descriptions of each function (or block).

If you supply reference help files, you can provide a classified listing of them.
HTML help summaries are similar to Contents.m files, but display in the
Help browser. If you already have a Contents.m file that lists all your public
functions, you can use it as the basis for creating a categorical listing in
HTML. If you do not have a Contents.m file, consider creating one to round
out your toolbox. For more information, see “Help Summary for Your Program
Files (Contents.m)” on page 22-6.

To include a Function-by-Category listing, create an HTML page for
it. Use the following example to learn how to edit and mark up your
Contents.m file, and then publish it to HTML. You can name the output file
helpfuncbycat.html, as shown, or whatever you prefer. Within Contents.m,
organize your functions or blocks into categories that you define. Each
category begins a new cell. When you publish the file, each category displays
as a heading and has an anchor ID (from #1 to #n).

The helptoc_template.xml file use category names and anchor IDs in
<tocitem> elements in its reference section. In the template file, the section
for function reference includes links to the categorical listing page, category
anchors within it, and individual reference pages.

The following example shows the section of the helptoc.xml template file
that organizes function reference pages. Publishing helpfuncbycat.m created
anchor IDs #1, #2, #3, ... in output file helpfuncbycat.html to which some
<tocitem> elements refer:

<toc version="2.0">

<!-- ... -->

<!-- Function reference next -->

<!-- The first file lists all of the functions, categorizing them -->

<tocitem target="function_categories.html">Functions

<!-- First category, with link to anchor in above page -->

<tocitem target="function_categories.html#1">First Category

<!-- Inside category, list its functions alphabetically -->

<tocitem target="function_1.html">function_1</tocitem>

<tocitem target="function_2.html">function_2</tocitem>

22-34

Add Documentation to the Help Browser

<!-- ... -->

</tocitem>

<!-- Second category, with link to anchor in above page -->

<tocitem target="helpfuncbycat.html#2">Second Category</tocitem>

<!-- Inside category, list its functions alphabetically -->

<tocitem target="function_3.html">function_3</tocitem>

<tocitem target="function_4.html">function_4</tocitem>

<!-- ... -->

</tocitem>

<!-- Third category, with link to anchor in above page -->

<tocitem target="helpfuncbycat.html#3">Third category</tocitem>

<!-- ... -->

</tocitem>

</tocitem>

</toc>

Tip Copy the preceding XML code and paste it into an editor. Delete any
<tocitem> ... </tocitem> lines that you do not need, and replace text
italicized in the listing with your own content. Then, paste your code
intohelptoc.xml, replacing the template content section for reference pages
displayed here.

Italics in the listing indicate strings you need to replace with your own
category, file, function, and anchor names and other text. If you place
help files for functions or blocks in a subfolder of the one containing your
helptoc.xml file, include a relative path in the target attribute for each
<tocitem>. For example, if you place function reference pages in a subfolder
called /reference, you would specify the target as follows:

<tocitem target="./reference/function_1.html">function_1</tocitem>

Adding Function Category Listings: Upslope Area Toolbox
Example
As mentioned previously, a functions-by-category listing works like a
Contents.m file. The following example shows how the Contents.m file for
the Upslope Area toolbox example was marked up and published to create an

22-35

22 Create Help and Demos

HTML page that categorizes the toolbox functions and links each function to
its reference documentation.

Note If you perform the following procedure, first copy the Upslope
Area toolbox Contents.m file to a working folder so you do not
overwrite the file or the files upslope_functions_by_cat.m and
upslope_functions_by_cat.html that following the example generates.

1 Edit the original Upslope Area toolbox Contents.m file:

% Upslope Area Toolbox

% Version 2.0 09-Dec-2009

%

% Requires Image Processing Toolbox(TM).

%

% Flow Direction.

% demFlow - Downslope flow direction for a DEM

% facetFlow - Facet flow direction

% flowMatrix - Linear equations representing water flow

% pixelFlow - Downslope flow direction for DEM pixels

%

% Preprocessing and Postprocessing.

% borderNans - Find NaNs connected to DEM border

% fillSinks - Fill interior sinks in a DEM

% postprocessPlateaus - Replace upslope areas for plateaus with mean value

%

% Hydrological Applications.

% dependenceMap - Dependence map for water flow in a DEM

% influenceMap - Influence map for water flow in a DEM

% upslopeArea - Upslope area measurements for a DEM

%

% Display.

% visDemFlow - Visualize flow directions in a DEM

% visMap - Visualize influence or dependence map for a DEM

%

% Data.

% milford_ma_dem.mat - Sample DEM data provided by USGS and distributed

% via Geo Community (geoworld.com), a USGS data

22-36

Add Documentation to the Help Browser

% distribution partner. The data set is a 1:24,000-scale

% raster profile digital elevation model. Download the

% "Milford" file from the "Digital Elevation Models (DEM)

% - 24K Middlesex County, Massachusetts, United States"

% page:

%

% http://data.geocomm.com/catalog/US/61059/526/group4-3.html

%

% natick_ned* - Sample 1/3 arc-second DEM data for a region in Natick,

% Massachusetts. Downloaded from the The National Map

% Seamless Server (http://seamless.usgs.gov/index.php).

%

%

% Steven L. Eddins

% Copyright 2007-2009 The MathWorks, Inc.

2 In the Editor, mark up Contents.m as follows:

a Add a top-level heading, Functions by Category.

b Format the five categories (Flow Direction, Preprocessing and
Postprocessing, Hydrological Applications, Display, and Data) with double
percent signs (%%). Doing so turns the sections into code cells, which become
section headings in HTML.

c Place an asterisk (*) in front of each function name to mark it as a bullet
in HTML.

d Format each function name as a hyperlink to its own reference page. In the
Upslope example, function reference pages were created by extracting the
function help text to files called functionName_help.m, which were then
published as functionName_help.html.

.

The complete markup of Contents.m into a functions-by-category source
listing looks like the following example:

%% Functions by Category

% Upslope Area Toolbox

% Version 2.0 09-Dec-2009

22-37

22 Create Help and Demos

%

% Requires Image Processing Toolbox(TM).

%

%% Flow Direction

% * <demFlow_help.html |demFlow|> - Downslope flow direction for a DEM

% * <facetFlow_help.html |facetFlow|> - Facet flow direction

% * <flowMatrix_help.html |flowMatrix|> - Linear equations representing water flow

% * <pixelFlow_help.html |pixelFlow|> - Downslope flow direction for DEM pixels

%

%% Preprocessing and Postprocessing

% * <borderNans_help.html |borderNans|> - Find NaNs connected to DEM border

% * <fillSinks_help.html |fillSinks|> - Fill interior sinks in a DEM

% * <postprocessPlateaus_help.html |postprocessPlateaus|> - Replace upslope areas

% for plateaus with mean value

%

%% Hydrological Applications

% * <dependenceMap_help.html |dependenceMap|> - Dependence map for water flow in a DEM

% * <influenceMap_help.html |influenceMap|> - Influence map for water flow in a DEM

% * <upslopeArea_help.html |upslopeArea|> - Upslope area measurements for a DEM

%

%% Display

% * <visDemFlow_help.html |visDemFlow|> - Visualize flow directions in a DEM

% * <visMap_help.html |visMap|> - Visualize influence or dependence map for a DEM

%

%% Data

% * milford_ma_dem.mat - Sample DEM data provided by USGS and distributed

% via Geo Community (geoworld.com), a USGS data

% distribution partner. The data set is a 1:24,000-scale

% raster profile digital elevation model. Download the

% "Milford" file from the "Digital Elevation Models (DEM)

% - 24K Middlesex County, Massachusetts, United States"

% page at http://data.geocomm.com/catalog/US/61059/526/group4-3.html.

% * natick_ned* - Sample 1/3 arc-second DEM data for a region in Natick,

% Massachusetts. Downloaded from the The National Map Seamless Server

% (http://seamless.usgs.gov/index.php).

%

%% Source

% Steven L. Eddins

% Copyright 2007-2009 The MathWorks, Inc.

22-38

Add Documentation to the Help Browser

3 Save your formatted file as upslope_functions_by_cat.m in your current
folder (in this case, called helptests).

4 Publish the file, and view the resulting HTML file:

publish upslope_functions_by_cat.m
ans =
C:\myfiles\upslope\helptests\upslope_functions_by_cat.html

web(ans)

22-39

22 Create Help and Demos

Making Your HTML Help Files Searchable
If you want the Help browser to include your documentation in its search
results, provide a search database for your HTML help files. MATLAB can
create a database for you with one command.

22-40

Add Documentation to the Help Browser

The example uses the info.xml file for the Upslope Area toolbox with the
help_location specified as C:\myfiles\upslope\html.

To create the database files:

1 If you have not already done so, add the folder containing your info.xml
file to the search path.

For the example, add the C:\myfiles\upslope folder to the path.

2 Create a searchable database by running

builddocsearchdb('full_path to_help_location')

For the example, assuming your help files are in
C:\myfiles\upslope\html, run:

builddocsearchdb ('C:\myfiles\upslope\html')

You must use the functional form when you call builddocsearchdb (with
the folder location in single quotes inside parentheses).

builddocsearchdb creates a folder named helpsearch in the
help_location folder. For the example, this command creates the folder
C:\myfiles\upslope\html\helpsearch.

Each time you run it, builddocsearchdb generates three files in
helpsearch:

• A file called deletable.

• A file called segments.

• A file having a cfs extension with a name that varies.

3 To verify that your help files can be searched, use the search field in the
Help browser to search for any words in the HTML help files that you
provided in the help_location folder.

The next figure shows a search of the Upslope Area toolbox and other
documentation for the terms facet flow.

22-41

22 Create Help and Demos

Summary of Workflow for Providing HTML Help Files
To include your HTML help files in the Help browser Contents pane, you
must create and supply two XML files that the Help browser requires, plus
HTML, and image files you develop for your documentation. You must also
tell recipients of your software how to install these files. The following steps
summarize the steps to take to add your documentation to the Help browser
and distribute it to others.

This procedure uses template XML files that you need to customize. To see
examples of content and how the files are organized, refer to a complete
example of user documentation, the Upslope Area toolbox. To view the
Upslope documentation in the Help browser, click here, or run

addpath(fullfile(matlabroot, 'help','techdoc','matlab_env','examples','upslope'))

22-42

Add Documentation to the Help Browser

The Upslope Area Toolbox now appears in the Contents pane (toolboxes are
alphabetized), as the following graphic displays. The appearance of your
contents pane depends on what products you have installed.

Tip Print or bookmark this page of instructions. Then, when you place your
own HTML pages in the Help browser, you can view the instructions at the
same time.

1 Create or choose a folder for storing your help files. You must have write
access to the folder. You can use the same folder that contains your toolbox
code.

For the Upslope Area toolbox example, name the folder upslope.

2 Add an info.xml file to the folder. This file identifies the folder as one that
contains documentation. To add this file, either click here or follow these
two steps:

a Copy

copyfile(fullfile(matlabroot,'help','techdoc','matlab_env',

'examples','templates','info_template.xml'),pwd)

to the folder.

For example, copy the file to upslope.

22-43

22 Create Help and Demos

b Verify that the copied info_template.xml file is writable. If it is read-only,
make it writable with:

fileattrib('info_template.xml','+w')

3 Rename the copy of info_template.xml to info.xml. The file must have
this name.

4 Within your current folder, create a new folder to contain files for the Help
browser Contents. (The info.xml points to this folder as <help_location>.)

For the example, in mytoolbox, create a folder named html.

5 Make the new folder your current folder.

For the example, cd html.

6 Add a helptoc.xml file to the empty folder. This file organizes the Help
browser table of contents for your toolbox. To add this file, either click here or
follow these two steps:

a Copy the helptoc_template.xml file to your working directory:

copyfile(fullfile(matlabroot,'help','techdoc','matlab_env',

'examples','templates','helptoc_template.xml'),pwd)

to the folder.

For example, copy the file to mytoolbox/html.

b Verify that the copied helptoc_template.xml file is writable. If it is
read-only, make it writable with:

fileattrib('helptoc_template.xml','+w')

7 Rename the copy of helptoc_template.xml to helptoc.xml. It must have
this name.

8 Move the HTML help files you created, as described in “Summary of Creating
and Installing HTML Help Files” on page 22-14, to the folder containing your
helptoc.xml file. Also move to the folder any files that the HTML files
reference, such as image files.

22-44

Add Documentation to the Help Browser

The XML files in the examples/templates folder have no accompanying
HTML files. You can, however, view files for the example Upslope Area
toolbox and learn how its helptoc.xml file organizes HTML documentation
content. For details, see “Organizing Your Documentation” on page 22-15

9 In the Editor, open, modify, and save your info.xml, helptoc.xml files.

For details about changes to make, see:

• “More About the info.xml File” on page 22-22

• “More About the helptoc.xml File” on page 22-27

• “Creating Function and Block Category Listings” on page 22-33

10 Verify that the Help browser Filter by Product preference is set so that
your toolbox appears in the display. To set the Filter by Product preference:

a Access the Help Preferences pane by selecting
File > Preferences > Help.

b Under Filter by Product, select All products.

11 Add the folder to the search path.

For example, add upslope to the search path.

12 View your HTML help files in the Help browser Contents pane.

22-45

22 Create Help and Demos

13 Review the browser display, and verify that there are no errors. MATLAB
automatically validates info.xml files and reports any problems to the
Command Window. For information about addressing the problems, see
“Address Validation Errors for info.xml Files” on page 22-57.

14 If you provide your documentation to others, make sure that you include all
files and folders:

• HTML files.

• Images or other files referenced by the HTML files.

• Your info.xml and helptoc.xml files.

• Your search database files, if any.

22-46

Add Documentation to the Help Browser

You can use zip or gzip to create an archive of the folders.

15 Instruct recipients of your documentation how to display it. They need to:

a Unzip the archive containing the help files to any disk location they prefer
to use, and add the help folder to the search path.

b Verify that your toolbox is selected in the Filter by Product Help
preferences. Selecting it enables your toolbox to appear in the Contents
pane of the Help browser.

c If your toolbox still does not appear in the Contents pane, suggest
removing its folder from the search path and then adding back to the path.
The toolbox folder cannot be the current folder during this operation.

16 Inform your users which documentation features you support. For example:

• If you provided search database files, mention that Help browser search
results will include your documentation.

• Alternatively, you can instruct the users to generate a search database
with the builddocsearchdb function after they set up your files.

22-47

22 Create Help and Demos

Add Demos to the Help Browser

In this section...

“About Creating Demos” on page 22-48

“Providing Demos to Others” on page 22-56

About Creating Demos
You can provide demos for toolboxes you create and make them available
in the Help browser. Demos allow you to present the features of your
toolbox. Adding your demos to the Help browser is the best way to make
them accessible.

There are no requirements about the types of demos you can provide.
However, if you provide the same types of demos that MathWorks products
provide, users of your software are already familiar with using them.

This documentation includes an example folder which contains two demos
and refers to a third one that comes with MATLAB. Click here to add this
example folder to your search path, or run the following command:

addpath(fullfile(matlabroot,'help','techdoc','matlab_env','examples','demo_examples'))

The Contents pane of the Help browser displays an entry called Example
Demos under the Other Demos entry. As shown in the following figure, within
that entry you see three demos:

• Formatting Text for Publishing

• Square Waves from Fourier Series

• A video demo from MATLAB, Working in the Development Environment

22-48

Add Demos to the Help Browser

To remove the demos you just added, take their folder off the search path:

rmpath(fullfile(matlabroot,'help','techdoc','matlab_env','examples','demo_examples'))

22-49

22 Create Help and Demos

How to Add Demos

Tip Print or bookmark this page of instructions. Then, when you view your
own HTML pages in the Help browser, you can view the instructions at the
same time.

After you create a demo, you can access the demo from the Help browser
after you perform the following steps:

1 Create demos for your toolbox. See “About Creating Demos” on page 22-48.

You can effectively produce MATLAB code demos using the cell-publishing
features available in the Editor. Publishing creates an HTML file that
includes code, can include figures, describes how to use your code,
and enables you to execute the code from the Help browser. For more
information, see “Overview of Publishing MATLAB Code”.

2 Add the demos files to the Help browser using a special XML file that you
create. See “Workflow for Providing Demos” on page 22-50.

3 Provide the demo files, along with instructions for including these files in
the Help browser. See “Providing Demos to Others” on page 22-56.

The sections that follow refer to a folder of demo examples provided with this
documentation. Adapt the contents of that folder to set up your own demos.

Workflow for Providing Demos
To include demos for your toolbox in the Help browser Contents pane, you
must create and provide a demos.xml file and content for your demos. Specify
a location to MATLAB where the files will reside:

1 Create or choose a folder for storing your demos files. You must have write
access to the folder. If you have created a toolbox, the toolbox folder is a
good location for storing related demos.

For the example, the folder is /demo_examples.

2 Create your demo files by publishing code files, constructing a GUI, or
another method.

22-50

Add Demos to the Help Browser

3 Put all the demos files you created in the folder.

4 Add the folder for your demos files to the search path.

Note The folder cannot be the current folder when you add it to the path
or the Help browser will be unable to locate your demos.

5 Get the example demos.xml file to use as a template for your own file. Click
here to copy that file to your current folder, or

a Copy
matlabroot/help/techdoc/matlab_env/examples/demo_examples/demos.xml
to the folder for your demos files:

copyfile(fullfile(matlabroot,'help','techdoc','matlab_env',...
'examples','demo_examples','demos.xml'),pwd)

b Verify that the copied demos.xml file is writable. If it is read-only, make
in writable with:

fileattrib('demos.xml','+w')

6 Edit the content of your copy of demo.xml, changing it to describe and point
to your demo files. For details, see “More About the demos.xml File” on
page 22-52.

7 View your demos.xml file in the Help browser. A new node, Other Demos,
appears at the bottom of the Help browser Contents pane. Expand the
node to view the entries you added.

8 If the Other Demos entry does not appear at the bottom of the Help
Navigator, refresh the Help browser. You can refresh in two ways:

• Right-click on Demos in the Contents pane, and select Refresh Demos.
Doing so refreshes all demos on the search path and can take a moment.

• Remove the folder containing your demos.xml file from the search path
using rmpath. Then, use addpath to add your demos folder back on the
search path.

22-51

22 Create Help and Demos

Note The Help browser Filter by Product preference does not provide
an Other Demos entry or list the toolbox demos you add. However, the Help
browser always shows toolbox demos that you add to the search path.

More About the demos.xml File
Within the demos.xml file, the root tag is <demos>. This element includes
one <name>, <type>, <icon> and <description> for the main demo page
for your toolbox.

Include a <demoitem> for each demo you add. Provide multiple categories of
demos by including a <demosection> for each category. Put <demoitem>
entries within that category. If you include any categories, then all demos
must be in categories. In other words, if there is even one <demosection>,
then all demoitem tags must be within demosection tags.

Step 5 of the previous procedure tells how to obtain the example demos.xml
file. This example contains the following XML code:

<?xml version="1.0" encoding="utf-8"?>

<!-- Example demos.xml file for adding demos to the Help browser -->

<!-- Your version of this file must be named "demos.xml" -->

<demos>

<!-- Top-level Demo title in TOC -->

<name>Example Demos</name>

<type>toolbox</type>

<icon>HelpIcon.DEMOS</icon>

<description>These demos are given as examples to

demonstrate how to add demo files for your own toolbox.

</description>

<website>

Link to your Web site here

</website>

<!-- First group of demos begins here -->

<demosection>

<label>Markup Demos</label>

<!-- First demo begins here -->

<demoitem>

22-52

Add Demos to the Help Browser

<!-- How demo is described in the Contents pane -->

<label>Formatting Text for Publishing</label>

<!-- Type adds a system icon and this name next to demo item -->

<type>M-file</type>

<!-- File to display in the Viewing pane -->

<file>./html/formatted_block_demo.html</file>

<!-- Supply optinoal thumbnail for demo as a .png file -->

<!-- Name it <demo_name>.png -->

<!-- for this demo it is ./html/formatted_block_demo.png -->

</demoitem>

</demosection>

<!-- Second group of demos begins here -->

<demosection>

<label>Computational Demos</label>

<demoitem>

<!-- How demo is described in the Contents pane -->

<label>Sguare Waves from Fourier Series</label>

<!-- Do not add a <type> element if demo is executable -->

<!-- File to execute for "Run this demo" -->

<callback>fourier_demo</callback>

<!-- File to display in the Viewing pane -->

<file>./html/fourier_demo2.html</file>

</demoitem>

</demosection>

<!-- Third group of demos begins here -->

<demosection>

<label>Video Demos</label>

<demoitem>

<!-- Type adds a system icon and this name next to demo item -->

<type>video</type>

<!-- How demo is described in the Contents pane -->

<!-- This is an actual MATLAB Flash video demo -->

<!-- If Flash is installed, it runs in your system bowser -->

<label>Working in The Development Environment (4 min, 7 sec)</label>

<!-- Command or file to execute for "Run this demo" -->

<callback>

playbackdemo('WorkingInTheDevelopmentEnvironment',...

'toolbox/matlab/web/demos');

</callback>

</demoitem>

22-53

22 Create Help and Demos

</demosection>

</demos>

Lines starting with <!-- and ending with --> are comments. The code
contains two <demosection> items, each containing one <demoitem>. The
first demo consists of HTML documentation only (a <file> element). The
second one has both HTML documentation and MATLAB code that the
reader can execute (a <callback> element). When you include a callback
element, it must contain an executable command. The reader can execute
that command by clicking Run this demo at the top of the demo page.

The next table describes the demos.xml file listed above, and found in the
folder matlabroot/help/techdoc/matlab_env/examples/demo_examples.

Line XML Tag Notes Value for Example

4 <demos> The root element for a demos.xml
file.

No value

6 <name> Name of your toolbox or collection
of demos that displays under
Other Demos in the Help browser.

Example Demos

7 <type> The product type. Allowable values
are matlab, simulink, toolbox,
blockset, links_targets,
M-file, video, or other.

toolbox

8 <icon> Icon for your demo. You can use a
standard icon or provide a custom
icon by specifying a path to the
icon relative to the location of the
demos.xml file.

HelpIcon.DEMOS

9 to
11

<description> The description that appears in
the Help browser viewing pane, on
the main page for your demos.

Suggested text: “These demos are
given as examples to demonstrate
how to add demo files for your
own toolbox.”

22-54

Add Demos to the Help Browser

Line XML Tag Notes Value for Example

12 to
14

<website>
<a href=
"url">
</website>

(Optional) Link to a Web site.
For example, MathWorks demos
include a link near the top, on
the right: Product page at
mathworks.com. Can appear
anywhere before the </demos> tag.

<a href=
"http://www.mathworks.com">
Link to your Web site
here

16 <demosection> (Optional) Begins a category of
demos. Each category includes a
<label>, description, and at least
one <demoitem>. Use any number
of categories.

No value required

17 <label> Title shown in Help browser for a
<demosection>.

“Markup Demos”

19 <demoitem> Use one <demoitem> per demo.
Contains <label> and either a
<callback> or a <file> tag.

No value required

21 <label> Title shown for demoitem. “Formatting Text for Publishing”
(1st example demoitem)

23 <file> Name of HTML file describing
the demo, typically produced by
publish. Specify a relative path
from the location of demos.xml.

./html/formatted_block_demo.
html (1st example demoitem)

33 <callback> Name of an executable file or a
MATLAB command. This file runs
when you click Run this demo on
the demo page.

./html/fourier_demo2.
html (for 2nd demoitem example)

None <dependency> (Optional) Specifies other products
required to run the demo, such as
another toolbox. The text must
match a product name specified
in an info.xml file that is on
the search path or in the current
folder.

Not included

22-55

22 Create Help and Demos

Supplying Thumbnail Images for Demos. If your demo has an HTML file
to describe it, you can include a thumbnail, a small image typifying the demo.
The demos.xml file does not specify thumbnail images directly.

To include a thumbnail, you only need to supply a .png image file in
the same folder as the HTML file for the demo. Keep the image size to
within 96-by-64 pixels (width-by-height). Give the .png file the same
name as the HTML file. Thus, if the <file> element for your demo is
./html/formatted_block_demo.html, then your thumbnail must be named
formatted_block_demo.png and reside in the same folder.

When you publish a MATLAB script to HTML with the publish command or
Editor File menu item, you get a .png thumbnail file in the correct place with
the correct name by default.

Providing Demos to Others
Anyone who wants to use your demos needs the files and instructions for
using them:

1 Provide recipients with a folder containing:

• Your demo files

• All data, images or other files referenced by the demo files

• Your demos.xml file

2 Instruct recipients to add the folder containing the demos files to the
search path.

3 Inform recipients that the toolbox demos appear under Other Demos, the
last entry in the Contents pane.

22-56

Address Validation Errors for info.xml Files

Address Validation Errors for info.xml Files

In this section...

“About XML File Validation” on page 22-57

“Entities Missing or Out of Order in info.xml” on page 22-57

“Unrelated info.xml File” on page 22-58

“Invalid Constructs in info.xml File” on page 22-58

“Outdated info.xml File for a MathWorks Product” on page 22-58

About XML File Validation
When MATLAB finds an info.xml file on the search path or in the current
folder, it tries to add information to the Help browser or Start button, as
specified in the info.xml file. MATLAB automatically validates the file
against the supported schema. If there is an invalid construct in the info.xml
file, MATLAB displays an error in the Command Window. The error is
typically of the form:

Warning: File <yourxmlfile.xml> did not validate.
...

An info.xml validation error can occur when you start MATLAB, press the
Start button, or add folders to the search path.

Following, are the primary causes of an XML file validation error and
information to address them:

Entities Missing or Out of Order in info.xml
If you do not list required XML elements in the prescribed order, you receive
an XML validation error:

Often, errors result from incorrect ordering of XML tags. Correct the error by updating

the info.xml file contents to follow the guidelines in the MATLAB help documentation.

The message contains a hyperlink to the page you are now reading. For a
description of the elements you need in an info.xml file and their required
ordering, see “More About the info.xml File” on page 22-22.

22-57

22 Create Help and Demos

Unrelated info.xml File
Suppose you have a file named info.xml that has nothing to do with the
MATLAB Help browser or Start button. Because this info.xml file is an
unrelated file, if the file causes an error, the validation error is irrelevant.
In this case, the error is not actually causing any problems, so you can
safely ignore it. To prevent the error message from reoccurring, rename the
offending info.xml file, or ensure that the file is not on the search path or
in the current folder.

Invalid Constructs in info.xml File
If the purpose of the info.xml file is to add information to the Start button
or Help browser, correct the reported problem. Use the message in the error
to isolate the problem or use any validator. One validator you can use is
from the W3C® at http://www.w3.org/2001/03/webdata/xsv. For more
information about the structure of the info.xml file, consult its schema,
located at matlabroot/sys/namespace/info/v1/info.xsd.

Outdated info.xml File for a MathWorks Product
If you have an info.xml file from a different version of MATLAB, that file
could contain constructs that are not valid with your version. To identify an
info.xml file from another version, look at the full path names reported in
the error message. The path usually includes a version number, for example,
...\MATLAB\R14\.... In this situation, the error is not actually causing any
problems, so you can safely ignore the error message. To ensure that the error
does not reoccur, remove the offending info.xml file, or ensure that the file
is not on the search path or in the current folder.

22-58

http://www.w3.org/2001/03/webdata/xsv

Index

IndexSymbols and Numerics
() symbol

for indexing into an array 2-122
for specifying function input

arguments 2-122
[] symbol

for argument placeholder 2-127
for concatenating arrays 2-126
for constructing an array 2-126
for specifying function return values 2-126

{ } symbol
for constructing a cell array 2-118
for indexing into a cell array 2-118

! symbol
for entering a shell escape function 2-121

% symbol
for specifying character conversions 2-122
for writing single-line comments 2-122
for writing the H1 help line 14-13

' symbol
for constructing a character array 2-124

* symbol
for filename wildcards 2-115

, symbol
for separating array indices 2-117
for separating array row elements 2-117
for separating input or output

arguments 2-118
for separating MATLAB commands 2-118

. symbol
decimal point 2-119
for defining a structure field 2-119
for specifying object methods 2-119

: symbol
for converting to a column vector 2-117
for generating a numeric sequence 2-116
for preserving array shape on

assignment 2-117
for specifying an indexing range 2-117

; symbol

for separating rows of an array 2-123
for suppressing command output 2-124

@ symbol
for class folders 2-116
for constructing function handles 2-115

.() symbol
for creating a dynamic structure field 2-121

%{ and %} symbols
for writing multiple-line comments 2-123

.. symbol
for referring to a parent folder 2-119

... symbol
for continuing a command line 2-120

A
accuracy of calculations 2-13
addition operator 2-2
and (function equivalent for &) 2-6
anonymous functions 15-3

changing variables 15-9
constructing 15-3
evaluating variables 15-8
in cell arrays 15-6
multiple anonymous functions 15-13
passing a function to quad 15-12
using space characters in 15-6
with no input arguments 15-5

answer, assigned to ans 2-13
arguments

checking 16-14
checking number of 16-2
function 14-12
memory requirements 21-6
order in argument list 16-4
order of outputs 16-6
parsing 16-17
passing 1-13
passing variable number 16-4
to nested functions 16-11

Index-1

Index

arithmetic operators 2-2
array headers

memory requirements 21-4
arrays

cell array of strings 6-7
copying 21-3
of strings 6-3
variable names 1-10

assert
formatting strings 6-10

B
backtrace mode

warning control 18-33
base (numeric), converting 6-31
binary from decimal conversion 6-31
blank spaces in MATLAB commands 1-12
blanks

finding in string arrays 6-27
built-in functions 14-45

forcing a built-in call 14-46
identifying 14-46

C
caching

MATLAB folder 14-16
callback functions

creating 19-15
specifying 19-17

calling MATLAB® functions
storing as pseudocode 14-7

capitalization in MATLAB 1-12
case conversion 6-35
case sensitivity in MATLAB 1-12
cell arrays 8-1

creating 8-3
of strings 6-7

comparing strings 6-26

functions 6-8
preallocating 20-5
with anonymous function elements 15-6

character arrays
categorizing characters of 6-27
comparing 6-25
comparing values on cell arrays 6-26
conversion 6-30
converting to cell arrays 6-7
converting to numeric 6-32
creating 6-2
delimiting character 6-28
evaluating 2-108
finding a substring 6-28
functions 6-36
functions that create 6-35
functions that modify 6-35
in cell arrays 6-7
scalar 6-26
searching and replacing 6-28
searching or comparing 6-36
token 6-28
two-dimensional 6-3
using relational operators on 6-26

characters
conversion, in format specification

string 6-15
corresponding ASCII values 6-33
finding in string 6-27

characters and strings 6-2
classes 3-2

cell arrays 8-1
cell arrays of strings 6-7
combining unlike classes 11-2
complex numbers 4-18
determining 6-36
floating point 4-7

double-precision 4-7
single-precision 4-8

infinity 4-20

Index-2

Index

integers 4-3
logical 5-2
NaN 4-20
numeric 4-2
precedence 11-2

classes, Map 10-1 10-4
methods 10-5
properties 10-4

classes, matlab
overview 13-1

clear 14-35 21-12
comma-separated lists 2-100

assigning output from 2-102
assigning to 2-103
FFT example 2-106
generating from cell array 2-100
generating from structure 2-101
usage 2-104

concatenation 2-105
constructing arrays 2-104
displaying arrays 2-105
function call arguments 2-105
function return values 2-106

command/function duality 1-13
comments

in code 14-14
in scripts and functions 14-10

comparing
strings 6-25

complex arrays
memory requirements 21-7

complex conjugate transpose operator 2-2
complex number functions 4-27
complex numbers 4-18

creating 4-18
computational functions

in file 14-10
computer 2-13
computer type 2-13
concatenation

of strings 17-29
of unlike data types 11-2

containers, Map 10-1
concatenating 10-13
constructing objects of 10-6
examining contents of 10-9
mapping to different types 10-18
modifying a copy of 10-16
modifying keys 10-16
modifying values 10-15
reading from 10-11
removing keys and values 10-15
writing to 10-12

Contents.m file 14-17
control statements

break 2-17
case 2-15
conditional control 2-15
else 2-15
elseif 2-15
for 2-17
if 2-15
loop control 2-17
otherwise 2-15
switch 2-15
while 2-17

conversion characters in format specification
string 6-15

converting
cases of strings 6-35
dates 2-19
numbers 6-30
numeric to string 6-30
string to numeric 6-32
strings 6-30

converting numeric and string classes 6-37
converting numeric and string data types 6-37
converting numeric to string 6-30
converting string to numeric 6-32
cos 14-24

Index-3

Index

cputime
versus tic and toc 20-3

creating
cell array 8-3
strings 6-2
timer objects 19-5

D
data organization

structure arrays 7-16
data types 3-2

cell arrays 8-1
cell arrays of strings 6-7
complex numbers 4-18
determining 6-36
floating point 4-7

double-precision 4-7
single-precision 4-8

infinity 4-20
integers 4-3
logical 5-2
NaN 4-20
numeric 4-2
precedence 11-2

date and time functions 2-38
dates

handling and converting 2-19
debugging

errors and warnings 18-37
decimal representation

to binary 6-31
to hexadecimal 6-31

delaying program execution
using timers 19-2

delimiter in string 6-28
division operators

left division 2-2
matrix left division 2-2

matrix right division 2-2
right division 2-2

double-precision matrix 3-3 4-2
duality, command/function 1-13
dynamic field names in structure arrays 7-11
dynamic regular expressions 2-80

E
editor

accessing 14-15
for creating files 14-15

element-by-element organization for
structures 7-18

empty arrays
and relational operators 2-4

eps 2-13
epsilon 2-13
equal to operator 2-3
error

formatting strings 6-10
error handling

debugging 18-37
escape characters

in format specification string 6-11
evaluating

string containing MATLAB expression 2-108
examples

checking number of function arguments 16-2
for 2-17
function 14-25
script 14-24
vectorization 20-8
while 2-17

expressions
involving empty arrays 2-4
most recent answer 2-13
scalar expansion with 2-3

external program, running from MATLAB 2-113

Index-4

Index

F
field names

dynamic 7-11
filenames

wildcards 2-115
files

comments 14-14
contents 14-10
creating with text editor 14-15
kinds 14-9
naming 14-9
overview 14-10

find function
and subscripting 2-8

finding
substring within a string 6-28

floating point 4-7
floating point, double-precision 4-7

converting to 4-9
creating 4-8
maximum and minimum values 4-11

floating point, single-precision 4-8
converting to 4-9
creating 4-9
maximum and minimum values 4-12

floating-point functions 4-27
floating-point numbers

largest 2-13
smallest 2-13

floating-point relative accuracy 2-13
flow control

break 2-17
case 2-15
conditional control 2-15
else 2-15
elseif 2-15
for 2-17
if 2-15
loop control 2-17
otherwise 2-15

switch 2-15
while 2-17

folders
Contents.m file 14-17
help for 14-17
MATLAB

caching 14-16
private functions for 15-35

for
example 2-17

for loop 2-17
format for numeric values 4-23
formatting strings 6-10

field width 6-17
flags 6-18
format operator 6-13
precision 6-17
setting field width 6-20 to 6-21
setting precision 6-20 to 6-21
subtype 6-16
using identifiers 6-22
value identifiers 6-20

fprintf
formatting strings 6-10

function calls
memory requirements 21-6

function definition line
for subfunction 15-33
in an file 14-10
syntax 14-11

function handles
example 9-13
for nested functions 15-21
maximum name length 9-4
naming 9-4
operations on 9-27
overview of 9-2

function types
overloaded 15-37

function workspace 14-29

Index-5

Index

functions 14-44
arguments

passing variable number of 16-4
body 14-10 14-14
built-in 14-45

forcing a built-in call 14-46
identifying 14-46

calling
command syntax 1-13
function syntax 1-8 1-13
passing arguments 1-8 1-13

cell arrays of strings 6-8
character arrays 6-36
clearing from memory 14-35
comments 14-10
comparing character arrays 6-36
complex number 4-27
date and time 2-38
example 14-25
floating-point 4-27
identifying 14-44
infinity 4-28
integer 4-26
logical array 5-6
modifying character arrays 6-35
multiple output arguments 14-12
NaN 4-28
numeric and string conversion 6-37
numeric to string conversion 6-30
output formatting 4-28
overloaded 14-46
primary 15-33
searching character arrays 6-36
storing as pseudocode 14-7
string to numeric conversion 6-32
that determine data type 6-36
type identification 4-28
types of 14-26

anonymous 15-3
nested 15-16

overloaded 15-37
primary 15-15
private 15-35
subfunctions 15-33

G
global variables 14-32
greater than operator 2-3
greater than or equal to operator 2-3

H
H1 line 14-10 14-13

and help command 14-10
and lookfor command 14-10

help
and H1 line 14-10
creating for program files 22-4
file 14-13

help text 14-10
hexadecimal, converting from decimal 6-31

I
imaginary unit 2-13
Inf 2-13
infinity 4-20

functions 4-28
represented in MATLAB 2-13

info.xml validation errors 22-57
inputParser class 16-17
integer functions 4-26
integers 4-3

creating 4-4
largest system can represent 2-13
smallest system can represent 2-13

intmax 2-13
intmin 2-13

Index-6

Index

K
keywords

checking for 17-26

L
large data sets

memory usage in array storage 21-3
memory usage in function calls 21-16

less than operator 2-3
less than or equal to operator 2-3
load 21-12
local variables 14-29
logical array functions 5-6
logical class 5-2
logical data types 5-2
logical expressions

and subscripting 2-8
logical operators 2-4

bit-wise 2-9
elementwise 2-5
short-circuit 2-10

lookfor 14-10 14-13
and H1 line 14-10

loops
for 2-17
while 2-17

lowercase usage in MATLAB 1-12

M
Map class 10-1 10-4

constructing objects of 10-6
methods 10-5
properties 10-4

Map objects 10-1
concatenating 10-13
constructing 10-6
examining contents of 10-9
mapping to different types 10-18

modifying a copy of 10-16
modifying keys 10-16
modifying values 10-15
reading from 10-11
removing keys and values 10-15
writing to 10-12

MATLAB
programming

files 14-9
scripts 14-24

version 2-13
matrices

constructing a matrix operations
constructing 1-3

double-precision 3-3 4-2
single-precision 3-3 4-2

matrix 1-3
memory

making efficient use of 21-2
management 21-12
Out of Memory message 21-23

memory requirements
array headers 21-4
for array allocation 21-2
for complex arrays 21-7
for copying arrays 21-3
for creating and modifying arrays 21-2
for handling variables in 21-2
for numeric arrays 21-7
for passing arguments 21-6
for sparse matrices 21-7

message identifiers
using with warnings 18-27

methods
determining which is called 14-37

multiplication operators
matrix multiplication 2-2
multiplication 2-2

Index-7

Index

N
names

superseding 15-34
NaN 2-13 4-20

functions 4-28
logical operations on 4-21

nargin
checking input arguments 16-2
in nested functions 16-11

nargout
in nested functions 16-11

nested functions 15-16
creating 15-16
example — creating a function handle 15-27
example — function-generating

functions 15-29
passing optional arguments 16-11
separate variable instances 15-25
using function handles with 15-21
variable scope in 15-19

newlines in string arrays 6-27
not (function equivalent for ~) 2-6
not a number (NaN) 4-20
not equal to operator 2-3
Not-a-Number 2-13
number of arguments 16-2
numeric arrays

memory requirements 21-7
numeric classes 4-2

conversion functions 6-37
converting to char 6-30
setting display format 4-23

numeric data types 4-2
conversion functions 6-37
setting display format 4-23

numeric to string conversion
functions 6-30

O
objects

definitions of 12-2
key concepts 12-8

online help 14-13
operator precedence 2-11

overriding 2-12
operators

addition 2-2
arithmetic 2-2
categories 2-2
colon 2-2
complex conjugate transpose 2-2
equal to 2-3
greater than 2-3
greater than or equal to 2-3
left division 2-2
less than 2-3
less than or equal to 2-3
logical 2-4

bit-wise 2-9
elementwise 2-5
short-circuit 2-10

matrix left division 2-2
matrix multiplication 2-2
matrix power 2-2
matrix right division 2-2
multiplication 2-2
not equal to 2-3
power 2-2
relational 2-3
right division 2-2
subtraction 2-2
transpose 2-2
unary minus 2-2
unary plus 2-2

optimization
preallocation, array 20-4
vectorization 20-8

or (function equivalent for |) 2-6

Index-8

Index

organizing data
structure arrays 7-16

Out of Memory message 21-23
output arguments 14-12

order of 16-6
output formatting functions 4-28
overloaded functions 14-46 15-37

P
pack 21-12
packages

use in references 12-11
parentheses

for input arguments 14-12
overriding operator precedence with 2-12

parsing input arguments 16-17
percent sign (comments) 14-14
performance

analyzing 20-2
persistent variables 14-32
pi 2-13
plane organization for structures 7-16
polar 14-24
power operators

matrix power 2-2
power 2-2

preallocation
arrays 20-4
cell array 20-5

precedence
of class 11-2
of data types 11-2
operator 2-11

overriding 2-12
primary functions 15-15
private folder 15-35
private functions 15-35
program control

break 2-17

case 2-15
conditional control 2-15
else 2-15
elseif 2-15
for 2-17
if 2-15
loop control 2-17
otherwise 2-15
switch 2-15
while 2-17

program files
creating

in MATLAB folder 14-16
primary function 15-15
subfunction 15-33
superseding existing names 15-34

programs
running external 2-113

pseudocode 14-7

Q
quit 21-12

R
realmax 2-13
realmin 2-13
regexp 2-92
regexpi 2-92
regexprep 2-92
regexptranslate 2-92
regular expression operators

character representation
alarm character (\a) 2-57
backslash character (\\) 2-57 2-94
backspace character (\b) 2-57
carriage return character (\r) 2-57
dollar sign (\$) 2-57
form feed character (\f) 2-57

Index-9

Index

hexadecimal character (\x) 2-57
horizontal tab character (\t) 2-57
literal character (\char) 2-57
new line character (\n) 2-57
octal character (\o) 2-57
vertical tab character (\v) 2-57

character types
match alphanumeric character (\w) 2-56
match any character (period) 2-54
match any characters but these

([^c1c2c3]) 2-53
match any of these characters

([c1c2c3]) 2-55
match characters in this range

([c1-c2]) 2-56
match digit character (\d) 2-56
match nonalphanumeric character

(\W) 2-54
match nondigit character (\D) 2-54
match nonwhitespace character

(\S) 2-53
match whitespace character (\s) 2-56

conditional operators
if condition, match expr

((?(condition)expr)) 2-78 2-97
dynamic expressions

pattern matching functions 2-84
pattern matching scripts 2-85
replacement expressions 2-83
string replacement functions 2-87

logical operators
atomic group ((?>expr)) 2-58
comment (?#expr) 2-60
grouping and capture (expr) 2-58
grouping only (?:expr) 2-58
match exact word (\<expr\>) 2-61
match expr1 or expr2 (expr1|expr2) 2-59
match if expression begins string

(^expr) 2-61

match if expression begins word
(\<expr) 2-61

match if expression ends string
(expr$) 2-61

match if expression ends word
(expr\>) 2-61

noncapturing group ((?:expr)) 2-58
lookaround operators

match expr1, if followed by expr2
(expr1(?=expr2)) 2-63

match expr1, if not followed by expr2
(expr1(?!expr2)) 2-64

match expr2, if not preceded by expr1
(expr1(?<!expr2)) 2-66

match expr2, if preceded by expr1
(expr1(?<=expr2)) 2-65

operator summary 2-93
quantifiers

lazy quantifier (quant?) 2-70
match 0 or 1 instance (expr?) 2-69
match 0 or more instances (expr*) 2-69
match 1 or more instances (expr+) 2-70
match at least m instances

(expr{m,}) 2-68
match m to n instances (expr{m,n}) 2-70
match n instances (expr{n}) 2-68

token operators
conditional with named token

((?(name)s1|s2)) 2-76
create named token

((?<name>expr)) 2-76
create unnamed token ((expr)) 2-71
give name to token

((?<name>expr))) 2-76
if token, match expr1, else expr2

((?(token)expr1|expr2)) 2-78
match named token (\k<name>) 2-76
match Nth token (\N) 2-71
replace Nth token ($N) 2-72
replace Nth token (N) 2-72

Index-10

Index

replace with named token
(?<name>) 2-76

regular expressions
character representation 2-57
character types 2-53
conditional expressions 2-78
dynamic expressions 2-80

example 2-81
functions

regexp 2-92
regexpi 2-92
regexprep 2-92
regexptranslate 2-92

introduction 2-40
logical operators 2-58
lookaround operators 2-61

used in logical statements 2-67
multiple strings

matching 2-91
quantifiers 2-68

lazy 2-70
tokens 2-71

example 1 2-73
example 2 2-73
introduction 2-72
named capture 2-76
operators 2-71
use in replacement string 2-76

relational operators 2-3
empty arrays 2-4
strings 6-26

replacing substring within string 6-28

S
save 21-12
scalar

and relational operators 6-26
expansion 2-3
string 6-26

scheduling program execution
using timers 19-2

scripts 14-9
example 14-24
executing 14-24

search path
files on 15-34

shell escape functions 2-113
short-circuiting

in conditional expressions 2-7
operators 2-10

single-precision matrix 3-3 4-2
smallest value system can represent 2-13
source code

protecting 14-6
(space) character

for separating array row elements 2-125
for separating function return values 2-125

spaces in MATLAB commands 1-12
sparse matrices

memory requirements 21-7
sprintf

formatting strings 6-10
square brackets

for output arguments 14-12
starting

timers 19-10
stopping

timers 19-10
strcmp 6-25
string to numeric conversion

functions 6-32
strings 6-2

comparing 6-25
converting to numeric 6-32
functions to create 6-35
searching and replacing 6-28

strings, cell arrays of 6-7
strings, formatting 6-10

escape characters 6-11

Index-11

Index

field width 6-17
flags 6-18
format operator 6-13
precision 6-17
setting field width 6-20 to 6-21
setting precision 6-20 to 6-21
subtype 6-16
using identifiers 6-22
value identifiers 6-20

structure arrays
data organization 7-16
dynamic field names 7-11
element-by-element organization 7-18
organizing data 7-16

example 7-18
plane organization 7-16

structures
field names

dynamic 7-11
subfunctions 15-33

accessing 15-34
creating 15-33
debugging 15-34
definition line 15-33

subscripting
with logical expression 2-8
with the find function 2-8

substring within a string 6-28
subtraction operator 2-2
superseding existing filenames 15-34
symbols 2-114

asterisk * 2-115
at sign @ 2-115
colon : 2-116
comma , 2-117
curly braces { } 2-118
dot . 2-118
dot-dot .. 2-119
dot-dot-dot ... 2-119
dot-parentheses .() 2-121

exclamation point ! 2-121
parentheses () 2-121
percent % 2-122
percent-brace %{ and %} 2-123
plus sign + 2-123
semicolon ; 2-123
single quotes ' 2-124
space character 2-125
square brackets [] 2-126

T
tabs in string arrays 6-27
tic and toc

versus cputime 20-3
time and date functions 2-38
timer objects

blocking the command line 19-12
callback functions 19-14
creating 19-5
deleting 19-5
execution modes 19-19
finding all existing timers 19-24
naming convention 19-6
overview 19-2
properties 19-7
starting 19-10
stopping 19-10

timers
starting and stopping 19-10
using 19-2

tips, programming
additional information 17-53
command and function syntax 17-3
debugging 17-21
development environment 17-10
evaluating expressions 17-32
files and filenames 17-45
function arguments 17-15
functions 17-12

Index-12

Index

help 17-6
input/output 17-48
MATLAB path 17-34
operating system compatibility 17-51
program control 17-38
program development 17-18
save and load 17-42
starting MATLAB 17-50
strings 17-29
variables 17-25

token in string 6-28
tokens

regular expressions 2-71
tolerance 2-13
transpose operator 2-2
type identification functions 4-28

U
unary minus operator 2-2
unary plus operator 2-2
uppercase usage in MATLAB 1-12

V
value

largest system can represent 2-13
varargin 16-4

in argument list 16-4
in nested functions 16-11

varargout 16-6
in argument list 16-4 16-6
in nested functions 16-11
packing contents 16-6

variables 1-3
global 14-32
lifetime of 14-29
local 14-29
naming 1-10

conflict with function names 1-10

persistent 14-32
scope 14-29 to 14-30

in nested functions 14-31
storage in memory 21-2

vector
preallocation 20-4

vectorization 20-8
example 20-8

vectors 1-3
verbose mode

warning control 18-33
version 2-13

obtaining 2-13

W
warning

formatting strings 6-10
warning control 18-25

backtrace, verbose modes 18-33
saving and restoring state 18-32

warning control statements
message identifiers 18-27
output from 18-30
output structure array 18-31

warnings
debugging 18-37
identifying 18-24
syntax 18-26
warning control statements 18-27
warning states 18-27

which 14-37
while

example 2-17
while loop 2-17
white space

finding in string 6-27
whos

interpreting memory use 21-12
wildcards, in filenames 2-115

Index-13

Index

workspace
of individual functions 14-29

X
XML: file validation 22-57

Index-14

	toc
	Language
	Syntax Basics
	Create Variables
	Create Numeric Arrays
	Store Text in Character Strings
	Enter Multiple Statements on One Line
	Continue Long Statements on Multiple Lines
	Call Functions
	Ignore Function Outputs
	Variable Names
	Valid Names
	Conflicts with Function Names

	Case and Space Sensitivity
	Command vs. Function Syntax
	Command and Function Syntaxes
	Avoid Common Syntax Mistakes
	Passing Variable Names

	How MATLAB Recognizes Command Syntax

	Program Components
	Operators
	Arithmetic Operators
	Arithmetic Operators and Arrays

	Relational Operators
	Relational Operators and Arrays
	Relational Operators and Empty Arrays

	Logical Operators
	Element-Wise Operators and Functions
	Bit-Wise Functions
	Short-Circuit Operators

	Operator Precedence
	Precedence of AND and OR Operators
	Overriding Default Precedence

	Special Values
	Conditional Statements
	Loop Control Statements
	Dates and Times
	Representing Dates and Times in MATLAB
	Dates and Dates with Time

	Date and Time Functions
	Working with Date Strings
	Creating Date Strings In MATLAB
	Specifying the Fields of a Date String
	Creating Multiple Date Strings
	Time Display in Date Strings

	Date String Tables
	Symbolic Identifiers for Individual Fields
	Numeric Identifiers for Predefined Formats

	Working with Date Vectors
	Creating a Date Vector
	Converting from Date String to Date Vector
	Converting from Serial Date Number to Date Vector
	Creating Multiple Date Vectors
	Milliseconds in Serial Date Numbers
	Examples of Using Date Vectors

	Working with Serial Date Numbers
	Converting from Date String to Serial Date Number
	Converting from Date Vector to Serial Date Number
	Creating Multiple Serial Date Numbers
	Using Serial Date Numbers For Elapsed Time
	Examples of Using Serial Date Numbers

	Other Considerations
	Carrying to the Next Field
	Specifying a Pivot Year
	Date Vectors vs. Vectors of Date Numbers

	Function Summary

	Regular Expressions
	Overview
	Calling Regular Expression Functions from MATLAB
	MATLAB Regular Expression Functions
	Returning the Desired Information
	Modifying Parameters of the Search (Modes)

	Parsing Strings with Regular Expressions
	Step 1 — Identify Unique Patterns in the String
	Step 2 — Express Each Pattern as a Regular Expression
	Step 3 — Call the Appropriate Search Function

	Other Benefits of Using Regular Expressions
	Parsing or Replacing with Multiple Expressions and Strings
	Replacing Parts of a String
	Matching with Tokens Taken from the String
	Matching and Replacing Strings Dynamically

	Metacharacters and Operators
	Character Type Operators
	Any Character — .
	Selected Characters — [c1c2c3]
	Range of Characters — [c1 - c2]
	Word and White-Space Characters — \w, \s
	Numeric Digits — \d

	Character Representation
	Octal and Hexadecimal — \o, \x

	Grouping Operators
	Grouping and Capture — (expr)
	Grouping Only — (?:expr)
	Alternative Match — expr1|expr2

	Nonmatching Operators
	Including Comments — (?#expr)

	Positional Operators
	Start and End of String Match — ^expr, expr$
	Start and End of Word Match — \<expr, expr\>
	Exact Word Match — \<expr\>

	Lookaround Operators
	Using the Lookahead Operator — expr(?=test)
	Using the Negative Lookahead Operator — expr(?!test)
	Using the Lookbehind Operator — (?<=test)expr
	Using the Negative Lookbehind Operator— (?<!test)expr
	Using Lookaround as a Logical Operator

	Quantifiers
	Zero or One — expr?
	Zero or More — expr*
	One or More — expr+
	Exact, Minimum, and Maximum Quantities — {min,max}
	Lazy Quantifiers — expr*?

	Tokens
	Operators Used with Tokens
	Introduction to Using Tokens
	Using Tokens — Example 1
	Using Tokens — Example 2
	Tokens That Are Not Matched
	Using Tokens in a Replacement String

	Named Capture
	Labeling Your Output

	Conditional Expressions
	Conditions Based on Tokens
	Conditions Based on a Lookaround Match
	Conditions Based on Return Values

	Dynamic Regular Expressions
	Example of a Dynamic Expression
	Dynamic Operators for the Match Expression
	Dynamic Operators for the Replacement Expression

	String Replacement
	Handling Multiple Strings
	Function, Mode Options, Operator, Return Value Summaries
	Function Summary
	Mode Options Summary
	Operator Summary
	Return Value Summary

	Comma-Separated Lists
	What Is a Comma-Separated List?
	Generating a Comma-Separated List
	Generating a List from a Cell Array
	Generating a List from a Structure

	Assigning Output from a Comma-Separated List
	Assigning to a Comma-Separated List
	How to Use the Comma-Separated Lists
	Constructing Arrays
	Displaying Arrays
	Concatenation
	Function Call Arguments
	Function Return Values

	Fast Fourier Transform Example

	String Evaluation
	Evaluate Expressions in Text Strings
	Alternatives to the eval Function
	Why Avoid the eval Function?
	Variables with Sequential Names
	Files with Sequential Names
	Function Names in Variables
	Field Names in Variables
	Error Handling

	Shell Escape Functions
	Symbol Reference
	Asterisk — *
	Filename Wildcard

	At — @
	Function Handle Constructor
	Class Folder Designator

	Colon — :
	Numeric Sequence Range
	Numeric Sequence Step
	Indexing Range Specifier
	Conversion to Column Vector
	Preserving Array Shape on Assignment

	Comma — ,
	Row Element Separator
	Array Index Separator
	Function Input and Output Separator
	Command or Statement Separator

	Curly Braces — { }
	Cell Array Constructor
	Cell Array Indexing

	Dot — .
	Decimal Point
	Structure Field Definition
	Object Method Specifier

	Dot-Dot — ..
	Parent Folder

	Dot-Dot-Dot (Ellipsis) — ...
	Line Continuation

	Dot-Parentheses — .()
	Dynamic Structure Fields

	Exclamation Point — !
	Shell Escape

	Parentheses — ()
	Array Indexing
	Function Input Arguments

	Percent — %
	Single Line Comments
	Conversion Specifiers

	Percent-Brace — %{ %}
	Block Comments

	Plus — +
	Semicolon — ;
	Array Row Separator
	Output Suppression
	Command or Statement Separator

	Single Quotes — ' '
	Character and String Constructor

	Space Character
	Row Element Separator
	Function Output Separator

	Slash and Backslash — / \
	Square Brackets — []
	Array Constructor
	Concatenation
	Function Declarations and Calls

	Tilde — ~
	Not Equal to
	Logical NOT
	Argument Placeholder

	Classes (Data Types)
	Overview of MATLAB Classes
	Fundamental MATLAB Classes
	How to Use the Different Classes

	Numeric Classes
	Overview of Numeric Classes
	Integers
	Integer Classes
	Creating Integer Data
	Arithmetic Operations on Integer Classes
	Largest and Smallest Values for Integer Classes
	Integer Functions

	Floating-Point Numbers
	Double-Precision Floating Point
	Single-Precision Floating Point
	Creating Floating-Point Data
	Creating Double-Precision Data
	Creating Single-Precision Data

	Arithmetic Operations on Floating-Point Numbers
	Double-Precision Operations
	Single-Precision Operations

	Largest and Smallest Values for Floating-Point Classes
	Largest and Smallest Double-Precision Values
	Largest and Smallest Single-Precision Values

	Accuracy of Floating-Point Data
	Double-Precision Accuracy
	Single-Precision Accuracy

	Avoiding Common Problems with Floating-Point Arithmetic
	Example 1 — Round-Off or What You Get Is Not What You Expect
	Example 2 — Catastrophic Cancellation
	Example 3 — Floating-Point Operations and Linear Algebra

	Floating-Point Functions
	References

	Complex Numbers
	Creating Complex Numbers
	Complex Number Functions

	Infinity and NaN
	Infinity
	NaN
	Logical Operations on NaN

	Infinity and NaN Functions

	Identifying Numeric Classes
	Display Format for Numeric Values
	Default Display
	Display Format Examples
	Setting Numeric Format in a Program

	Function Summary

	The Logical Class
	Overview of the Logical Class
	Identifying Logical Arrays
	Function Summary
	Examples of Identifying Logical Arrays

	Functions that Return a Logical Result
	Overview
	Examples of Functions that Return a Logical Result

	Using Logical Arrays in Conditional Statements
	Using Logical Arrays in Indexing

	Characters and Strings
	Creating Character Arrays
	Creating a Character String
	Creating a Rectangular Character Array
	Combining Strings Vertically
	Combining Strings Horizontally

	Identifying Characters in a String
	Working with Space Characters
	Expanding Character Arrays

	Cell Arrays of Strings
	Converting to a Cell Array of Strings
	Functions for Cell Arrays of Strings

	Formatting Strings
	Functions that Use Format Strings
	The Format String
	Special Characters

	Input Value Arguments
	Sequential and Numbered Argument Specification

	The Formatting Operator
	Constructing the Formatting Operator
	Conversion Character
	Subtype
	Precision
	Field Width
	Flags
	Value Identifiers

	Setting Field Width and Precision
	Effect on the Output String
	Specifying Field Width and Precision Outside the format String
	Using Identifiers In the Width and Precision Fields

	Restrictions for Using Identifiers

	String Comparisons
	Comparing Strings for Equality
	Comparing for Equality Using Operators
	Categorizing Characters Within a String

	Searching and Replacing
	Converting from Numeric to String
	Function Summary
	Converting to a Character Equivalent
	Converting to a String of Numbers
	Converting to a Specific Radix

	Converting from String to Numeric
	Function Summary
	Converting from a Character Equivalent
	Converting from a Numeric String
	Converting from a Specific Radix

	Function Summary

	Structures
	Create a Structure Array
	Access Data in a Structure Array
	Concatenate Structures
	Generate Field Names from Variables
	Access Data in Nested Structures
	Access Multiple Elements of a Nonscalar Struct Array
	Ways to Organize Data in Structure Arrays
	Plane Organization
	Element-by-Element Organization

	Memory Requirements for a Structure Array

	Cell Arrays
	What Is a Cell Array?
	Create a Cell Array
	Access Data in a Cell Array
	Add Cells to a Cell Array
	Delete Data from a Cell Array
	Combine Cell Arrays
	Pass Contents of Cell Arrays to Functions
	Preallocate Memory for a Cell Array
	Cell vs. Struct Arrays
	Multilevel Indexing to Access Parts of Cells

	Function Handles
	What Is a Function Handle?
	Creating a Function Handle
	Maximum Length of a Function Name
	The Role of Scope, Precedence, and Overloading When Creating a F
	Obtaining Permissions from Class Methods
	Example

	Using Function Handles for Anonymous Functions
	Arrays of Function Handles

	Calling a Function By Means of Its Handle
	Calling Syntax
	Calling a Function with Multiple Outputs
	Returning a Handle for Use Outside of a Function File
	Example — Using Function Handles in Optimization

	Preserving Data from the Workspace
	Preserving Data with Anonymous Functions
	Preserving Data with Nested Functions
	Loading a Saved Handle to a Nested Function

	Applications of Function Handles
	Example of Passing a Function Handle
	Pass a Function to Another Function
	Example 1 — Run quad on Varying Functions
	Example 2 — Run quad on Anonymous Functions
	Example 3 — Compare quad Results on Different Functions

	Capture Data Values For Later Use By a Function
	Example 1 — Constructing a Function Handle that Preserves Its Va
	Example 2 — Varying Data Values Stored in a Function Handle
	Example 3 — You Cannot Vary Data in a Handle to an Anonymous Fun

	Call Functions Outside of Their Normal Scope
	Save the Handle in a MAT-File for Use in a Later MATLAB Session

	Saving and Loading Function Handles
	Invalid or Obsolete Function Handles

	Advanced Operations on Function Handles
	Examining a Function Handle
	Converting to and from a String
	Converting a String to a Function Handle
	Converting a Function Handle to a String

	Comparing Function Handles
	Comparing Handles Constructed from a Named Function
	Comparing Handles to Anonymous Functions
	Comparing Handles to Nested Functions
	Comparing Handles Saved to a MAT-File

	Functions That Operate on Function Handles

	Map Containers
	Overview of the Map Data Structure
	Description of the Map Class
	Properties of the Map Class
	Methods of the Map Class

	Creating a Map Object
	Constructing an Empty Map Object
	Constructing An Initialized Map Object
	Combining Map Objects

	Examining the Contents of the Map
	Reading and Writing Using a Key Index
	Reading From the Map
	Adding Key/Value Pairs
	Building a Map with Concatenation

	Modifying Keys and Values in the Map
	Removing Keys and Values from the Map
	Modifying Values
	Modifying Keys
	Modifying a Copy of the Map

	Mapping to Different Value Types
	Mapping to a Structure Array
	Mapping to a Cell Array

	Combining Unlike Classes
	Valid Combinations of Unlike Classes
	Combining Unlike Integer Types
	Overview
	Example of Combining Unlike Integer Sizes
	Example of Combining Signed with Unsigned

	Combining Integer and Noninteger Data
	Combining Cell Arrays with Non-Cell Arrays
	Empty Matrices
	Concatenation Examples
	Combining Single and Double Types
	Combining Integer and Double Types
	Combining Character and Double Types
	Combining Logical and Double Types

	Using Objects
	MATLAB Objects
	Getting Oriented
	Getting Comfortable with Objects
	What Are Objects and Why Use Them?
	Accessing Objects
	Objects In the MATLAB Language
	Other Kinds of Objects Used by MATLAB

	General Purpose Vs. Specialized Arrays
	How They Differ
	Using General-Purpose Data Structures
	Using Specialized Objects

	Key Object Concepts
	Basic Concepts
	Classes Describe How to Create Objects
	Properties Contain Data
	Methods Implement Operations
	Events are Notices Broadcast to Listening Objects

	Creating Objects
	Class Constructor
	When to Use Package Names

	Accessing Object Data
	Listing Public Properties
	Getting Property Values
	Setting Property Values

	Calling Object Methods
	What Operations Can You Perform
	Method Syntax
	Calling the Correct Method

	Class of Objects Returned by Methods

	Desktop Tools Are Object Aware
	Tab Completion Works with Objects
	Editing Objects with the Variable Editor

	Getting Information About Objects
	The Class of Workspace Variables
	Extracting Data From Object Properties
	Testing for the Class of an Object

	Information About Class Members
	Logical Tests for Objects
	Testing for Object Equality
	Identifying MATLAB Objects

	Displaying Objects
	Getting Help for MATLAB Objects

	Copying Objects
	Two Copy Behaviors
	Value Object Copy Behavior
	Value Object Properties

	Handle Object Copy Behavior
	Copy Method for Handle Classes
	Reassigning Handle Variables
	Clearing Handle Variables
	Deleting Handle Objects
	Modifying Objects
	More Information About Handle and Value Classes

	Testing for Handle or Value Class

	Destroying Objects
	Object Lifecycle
	Difference Between clear and delete

	Defining Your Own Classes

	Scripts and Functions
	Program Files
	Program Development
	Overview
	Creating a Program
	Saving the Program
	Running the Program

	Getting the Bugs Out
	The Debugging Process

	Cleaning Up the Program
	Improving Performance
	Summary Report
	Detail Report
	File Listing

	Checking It In
	Protecting Your Source Code
	Building a Content Obscured Format with P-Code
	Building a Standalone Executable

	Working with Functions in Files
	Overview
	Types of Program Files
	Basic Parts of a Program File
	Function Definition Line
	The H1 Line
	Help Text
	The Function or Script Body
	Comments

	Creating a Program File
	Using Text Editors
	A Word of Caution on Saving Program Files

	Providing Help for Your Program
	Cleaning Up When the Function Completes
	Examples of Cleaning Up a Program Upon Exit
	Retrieving Information About the Cleanup Routine
	Using onCleanup Versus try-catch
	onCleanup in Scripts

	Scripts and Functions
	Scripts
	Functions
	Types of Functions
	Organizing Your Functions
	Identifying Dependencies
	Simple Display of Program File Dependencies
	Detailed Display of Program File Dependencies

	Base and Function Workspaces
	Share Data Between Workspaces
	Best Practice: Passing Arguments
	Nested Functions
	Persistent Variables
	Global Variables
	Evaluating in Another Workspace

	Calling Functions
	What Happens When You Call a Function
	Clearing Functions from Memory

	Function Precedence Order
	Resolving Difficulties In Calling Functions
	Conflicting Function and Variable Names
	Undefined Functions or Variables

	Calling External Functions
	Running External Programs

	Functions Provided By MATLAB
	Overview
	Functions
	Identifying Functions
	Viewing the Source Code

	Built-In Functions
	Identifying Built-In Functions
	Forcing a Built-In Call

	Overloaded MATLAB Functions
	Internal Utility Functions

	Types of Functions
	Overview of MATLAB Function Types
	Anonymous Functions
	Constructing an Anonymous Function
	Simple Example
	A Two-Input Example
	Evaluating With No Input Arguments

	Arrays of Anonymous Functions
	Space Characters in Anonymous Function Elements

	Outputs from Anonymous Functions
	Example

	Variables Used in the Expression
	Changing Variables Used in an Anonymous Function

	Examples of Anonymous Functions
	Example 1 — Passing a Function to quad
	Example 2 — Multiple Anonymous Functions

	Primary Functions
	Nested Functions
	Writing Nested Functions
	Example — More Than One Nested Function
	Example — Multiply Nested Functions

	Calling Nested Functions
	Variable Scope in Nested Functions
	The Scope of Output Variables

	Using Function Handles with Nested Functions
	Function Handles and Nested Function Variables
	Example Using Externally Scoped Variables
	Separate Instances of Externally Scoped Variables

	Restrictions on Assigning to Variables
	Examples of Nested Functions
	Example 1 — Creating a Function Handle for a Nested Function
	Example 2 — Function-Generating Functions

	Subfunctions
	Overview
	Calling Subfunctions
	Accessing Help for a Subfunction

	Private Functions
	Overview
	Private Folders
	Accessing Help for a Private Function

	Overloaded Functions

	Function Arguments
	Find Number of Function Arguments
	Input Arguments
	Output Arguments
	Support Variable Number of Inputs
	Support Variable Number of Outputs
	Validate Number of Function Arguments
	Automatic Argument Checks
	Input Checks with narginchk
	Output Checks with nargoutchk
	Argument Checking in Nested Functions
	Ignore Function Inputs
	Check Function Inputs with validateattributes
	Check Data Type and Other Attributes
	Add Input Name and Position to Errors
	Parse Function Inputs
	Step 1. Define your function.
	Step 2. Create an InputParser object.
	Step 3. Add inputs to the scheme.
	Step 4. Set properties to adjust parsing (optional).
	Step 5. Parse the inputs.
	Step 6. Use the inputs in your function.
	Step 7. Call your function.
	Input Parser Validation Functions

	Programming Tips
	Introduction
	Command and Function Syntax
	Syntax Help
	Command and Function Syntaxes
	Command Line Continuation
	Completing Commands Using the Tab Key
	Recalling Commands
	Clearing Commands
	Suppressing Output to the Screen

	Help
	Using the Help Browser
	Help on Functions from the Help Browser
	Help on Functions from the Command Window
	Topical Help
	Paged Output
	Writing Your Own Help
	Help for Subfunctions and Private Functions
	Help for Methods and Overloaded Functions

	Development Environment
	Workspace Browser
	Using the Find Utility
	Commenting Out a Block of Code
	Creating Functions from Command History
	Editing Functions in EMACS

	Functions
	Function Structure
	Using Lowercase for Function Names
	Getting a Function's Name and Path
	What Files Does a Function Use?
	Dependent Functions, Built-Ins, Classes

	Function Arguments
	Getting the Input and Output Arguments
	Variable Numbers of Arguments
	String or Numeric Arguments
	Passing Arguments in a Structure
	Passing Arguments in a Cell Array

	Program Development
	Planning the Program
	Using Pseudo-Code
	Selecting the Right Data Structures
	General Coding Practices
	Naming a Function Uniquely
	The Importance of Comments
	Coding in Steps
	Making Modifications in Steps
	Functions with One Calling Function
	Testing the Final Program

	Debugging
	The MATLAB Debug Functions
	More Debug Functions
	The MATLAB Graphical Debugger
	A Quick Way to Examine Variables
	Setting Breakpoints from the Command Line
	Finding Line Numbers to Set Breakpoints
	Stopping Execution on an Error or Warning
	Locating an Error from the Error Message
	Using Warnings to Help Debug
	Making Code Execution Visible
	Debugging Scripts

	Variables
	Rules for Variable Names
	Making Sure Variable Names Are Valid
	Do Not Use Function Names for Variables
	Checking for Reserved Keywords
	Avoid Using i and j for Variables
	Avoid Overwriting Variables in Scripts
	Persistent Variables
	Protecting Persistent Variables
	Global Variables

	Strings
	Creating Strings with Concatenation
	Comparing Methods of Concatenation
	Store Arrays of Strings in a Cell Array
	Converting Between Strings and Cell Arrays
	Search and Replace Using Regular Expressions

	Evaluating Expressions
	Find Alternatives to Using eval
	Assigning to a Series of Variables
	Short-Circuit Logical Operators
	Changing the Counter Variable within a for Loop

	MATLAB Path
	Precedence Rules
	Adding a Folder to the Search Path
	Handles to Functions Not on the Path
	Making Toolbox File Changes Visible to MATLAB
	Making Nontoolbox File Changes Visible to MATLAB
	Change Notification on Windows

	Program Control
	Using break, continue, and return
	Using switch Versus if
	MATLAB case Evaluates Strings
	Multiple Conditions in a case Statement
	Implicit Break in switch-case
	Variable Scope in a switch
	Catching Errors with try-catch
	Nested try-catch Blocks
	Forcing an Early Return from a Function

	Save and Load
	Saving Data from the Workspace
	Loading Data into the Workspace
	Viewing Variables in a MAT-File
	Appending to a MAT-File
	Save and Load on Startup or Quit
	Saving to an ASCII File

	Files and Filenames
	Naming Functions
	Naming Other Files
	Passing Filenames as Arguments
	Passing Filenames to ASCII Files
	Determining Filenames at Run-Time
	Returning the Size of a File

	Input/Output
	Common I/O Functions
	Loading Mixed Format Data
	Reading Files with Different Formats
	Interactive Input into Your Program

	Starting MATLAB
	Getting MATLAB to Start Up Faster

	Operating System Compatibility
	Executing O/S Commands from MATLAB
	Searching Text with grep
	Constructing Paths and Filenames
	Finding the MATLAB Root Folder
	Temporary Directories and Filenames

	For More Information
	Current CSSM
	Archived CSSM
	MATLAB Technical Support
	MATLAB Central
	MATLAB Newsletters (Digest, News & Notes)
	MATLAB Documentation
	MATLAB Index of Examples

	Software Development
	Error Handling
	Error Reporting in a MATLAB Application
	Overview
	Getting an Exception at the Command Line
	Determine the Fault from the Error Message
	Review the Failing Code
	Step Through the Code in the Debugger

	Getting an Exception in Your Program Code
	Generating a New Exception

	Capturing Information About the Error
	Overview
	The MException Class
	Object Constructor

	Properties of the MException Class
	Message Identifiers
	Text of the Error Message
	The Call Stack
	The Cause Array

	Methods of the MException Class

	Throwing an Exception
	Responding to an Exception
	Overview
	The try-catch Statement
	The Try Block
	The Catch Block

	Suggestions on How to Handle an Exception

	Warnings
	Reporting a Warning
	Formatted Message Strings
	Message Identifiers

	Identifying the Cause

	Warning Control
	Overview
	Warning Statements
	Attaching an Identifier to the Warning Statement

	Warning Control Statements
	Warning States
	Message Identifiers

	Output from Control Statements
	Output Structure Array

	Saving and Restoring State
	Example 1 — Performing an Explicit Query
	Example 2 — Performing an Implicit Query

	Backtrace and Verbose Modes
	Example 1 — Enabling Verbose Warnings
	Example 2 — Displaying a Stack Trace on a Specific Warning

	Debugging Errors and Warnings

	Program Scheduling
	Using a MATLAB Timer Object
	Overview
	Example: Displaying a Message

	Creating Timer Objects
	Creating the Object
	Naming the Object

	Working with Timer Object Properties
	Retrieving the Value of Timer Object Properties
	Setting the Value of Timer Object Properties
	Viewing a List of All Settable Properties

	Starting and Stopping Timers
	Starting a Timer
	Starting a Timer at a Specified Time
	Stopping Timer Objects
	Blocking the MATLAB Command Line

	Creating and Executing Callback Functions
	Associating Commands with Timer Object Events
	Creating Callback Functions
	Specifying Callback Functions Directly
	Putting Commands in a Callback Function
	Example: Writing a Callback Function

	Specifying the Value of Callback Function Properties

	Timer Object Execution Modes
	Executing a Timer Callback Function Once
	Executing a Timer Callback Function Multiple Times
	Handling Callback Function Queuing Conflicts

	Deleting Timer Objects from Memory
	Deleting One or More Timer Objects
	Testing the Validity of a Timer Object

	Finding Timer Objects in Memory
	Finding All Timer Objects
	Finding Invisible Timer Objects

	Performance
	Analyzing Your Program's Performance
	Overview
	The Profiler Utility
	Stopwatch Timer Functions
	Measuring Smaller Programs
	Using tic and toc Versus the cputime Function

	Techniques for Improving Performance
	Preallocating Arrays
	Preallocation Functions
	Preallocating a Nondouble Matrix

	Limiting Size and Complexity
	Assigning to Variables
	Changing a Variable's Data Type or Dimension
	Assigning Real and Complex Numbers

	Using Appropriate Logical Operators
	Overloading Built-In Functions
	Functions Are Generally Faster Than Scripts
	Load and Save Are Faster Than File I/O Functions
	Vectorizing Loops
	Simple Example of Vectorizing
	Advanced Example of Vectorizing
	Functions Used in Vectorizing

	Avoid Large Background Processes

	Memory Usage
	Memory Allocation
	Memory Allocation for Arrays
	Creating and Modifying Arrays
	Copying Arrays
	Array Headers
	Function Arguments

	Data Structures and Memory
	Numeric Arrays
	Complex Arrays
	Sparse Matrices
	Cell Arrays
	Structures

	Memory Management Functions
	The whos Function

	Strategies for Efficient Use of Memory
	Ways to Reduce the Amount of Memory Required
	Load Only As Much Data As You Need
	Process Data By Blocks
	Avoid Creating Temporary Arrays
	Use Nested Functions to Pass Fewer Arguments

	Using Appropriate Data Storage
	Use the Appropriate Numeric Class
	Reduce the Amount of Overhead When Storing Data
	Import Data to the Appropriate MATLAB Class
	Make Arrays Sparse When Possible

	How to Avoid Fragmenting Memory
	Preallocate Contiguous Memory When Creating Arrays
	Allocate Your Larger Arrays First
	Long-Term Usage (Windows Systems Only)

	Reclaiming Used Memory
	Save Your Large Data Periodically to Disk
	Clear Old Variables from Memory When No Longer Needed

	Resolving “Out of Memory” Errors
	General Suggestions for Reclaiming Memory
	Setting the Process Limit
	Disabling Java VM on Startup
	Increasing System Swap Space
	Windows Systems
	Linux Systems

	Using the 3GB Switch on Windows Systems
	Freeing Up System Resources on Windows Systems

	Create Help and Demos
	Types of Help You Can Create
	Add Help for Your Program Files
	Help Within a Program File
	Help Summary for Your Program Files (Contents.m)
	Help for Classes You Create
	Example of Help for a Externally Supplied Class

	Add Documentation to the Help Browser
	Types of Documentation You Can Provide
	Learning to Add Help from Examples
	Summary of Creating and Installing HTML Help Files
	Organizing Your Documentation
	Setting Up a Help Folder
	XML Files Required to Add Documentation and Demos
	Identifying a Help Folder: the info.xml File
	Customizing the info.xml Template File
	More About the info.xml File
	Creating the Table of Contents File: helptoc.xml
	More About the helptoc.xml File

	Creating Function Reference Pages
	Original Upslope Area Toolbox Function upslopeArea.m file
	Upslope Area Toolbox Reference Page Script upslopeArea_help.m fi
	Published Upslope Area Toolbox Reference Page upslopeArea_help.h

	Creating Function and Block Category Listings
	Adding Function Category Listings: Upslope Area Toolbox Example

	Making Your HTML Help Files Searchable
	Summary of Workflow for Providing HTML Help Files

	Add Demos to the Help Browser
	About Creating Demos
	How to Add Demos
	Workflow for Providing Demos
	More About the demos.xml File

	Providing Demos to Others

	Address Validation Errors for info.xml Files
	About XML File Validation
	Entities Missing or Out of Order in info.xml
	Unrelated info.xml File
	Invalid Constructs in info.xml File
	Outdated info.xml File for a MathWorks Product

	Index

	tables
	Current Date and Time Functions
	Conversion Functions
	Utility Functions
	Timing Measurement Functions
	MATLAB Regular Expression Functions
	Character Types
	Character Representation
	Grouping Operators
	Nonmatching Operators
	Positional Operators
	Lookaround Operators
	Quantifiers
	Ordinal Token Operators
	Named Token Operators
	Conditional Expression Operators
	Dynamic Expression Operators
	Replacement String Operators
	Integer Functions
	Floating-Point Functions
	Complex Number Functions
	Infinity and NaN Functions
	Class Identification Functions
	Output Formatting Functions
	Functions to Create Character Arrays
	Functions to Modify Character Arrays
	Functions to Read and Operate on Character Arrays
	Functions to Search or Compare Character Arrays
	Functions to Determine Class or Content
	Functions to Convert Between Numeric and String Classes
	Functions to Work with Cell Arrays of Strings as Sets

